Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do Bacteria Age? Biologists Discover the Answer Follows Simple Economics

28.10.2011
When a bacterial cell divides into two daughter cells and those two cells divide into four more daughters, then 8, then 16 and so on, the result, biologists have long assumed, is an eternally youthful population of bacteria. Bacteria, in other words, don’t age—at least not in the same way all other organisms do.

But a study conducted by evolutionary biologists at the University of California, San Diego questions that longstanding paradigm. In a paper published in the November 8 issue of the journal Current Biology, they conclude that not only do bacteria age, but that their ability to age allows bacteria to improve the evolutionary fitness of their population by diversifying their reproductive investment between older and more youthful daughters. An advance copy of the study appears this week in the journal’s early online edition.

“Aging in organisms is often caused by the accumulation of non-genetic damage, such as proteins that become oxidized over time,” said Lin Chao, a professor of biology at UC San Diego who headed the study. “So for a single celled organism that has acquired damage that cannot be repaired, which of the two alternatives is better—to split the cellular damage in equal amounts between the two daughters or to give one daughter all of the damage and the other none?”

The UC San Diego biologists’ answer—that bacteria appear to give more of the cellular damage to one daughter, the one that has “aged,” and less to the other, which the biologists term “rejuvenation”—resulted from a computer analysis Chao and colleagues Camilla Rang and Annie Peng conducted on two experimental studies. Those studies, published in 2005 and 2010, attempted unsuccessfully to resolve the question of whether bacteria aged. While the 2005 study showed evidence of aging in bacteria, the 2010 study, which used a more sophisticated experimental apparatus and acquired more data than the previous one, suggested that they did not age.

“We analyzed the data from both papers with our computer models and discovered that they were really demonstrating the same thing,” said Chao. “In a bacterial population, aging and rejuvenation goes on simultaneously, so depending on how you measure it, you can be misled to believe that there is no aging.”

In a separate study, the UC San Diego biologists filmed populations of E. coli bacteria dividing over hundreds of generations and confirmed that the sausage-shaped bacteria divided each time into daughter cells that grew elongated at different rates—suggesting that one daughter cell was getting all or most of the cellular damage from its mother while the other was getting little or none. Click this link to watch the time-lapse film of one bacterium dividing over 10 generations into 1,000 bacteria in a period of five hours and see if you can see any differences.

“We ran computer models and found that giving one daughter more the damage and the other less always wins from an evolutionary perspective,” said Chao. “It’s analogous to diversifying your portfolio. If you could invest $1 million at 8 percent, would that provide you with more money than splitting the money and investing $500,000 at 6 percent and $500,000 at 10 percent?”

“After one year it makes no difference,” he added. “But after two years, splitting the money into the two accounts earns you more and more money because of the compounding effect of the 10 percent. It turns out that bacteria do the same thing. They give one daughter a fresh start, which is the higher interest-bearing account and the other daughter gets more of the damage.”

Although E. coli bacteria appear to divide precisely down the middle into two daughter cells, the discovery that the two daughters eventually grow to different lengths suggests that bacteria do not divide as symmetrically as most biologists have come to believe, but that their division is really “asymmetrical” within the cell.

“There must be an active transport system within the bacterial cell that puts the non-genetic damage into one of the daughter cells,” said Chao. “We think evolution drove this asymmetry. If bacteria were symmetrical, there would be no aging. But because you have this asymmetry, one daughter by having more damage has aged, while the other daughter gets a rejuvenated start with less damage.”

Media Contact: Kim McDonald (858) 534-7572; kmcdonald@ucsd.edu
Comment: Lin Chao (858) 822-2740; lchao@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>