Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At the methane source of plants

25.06.2014

Plants produce greenhouse gas from the amino acid methionine

Summary:
There are more natural sources of the greenhouse gas methane than previously known to science. Plants are one of these sources. A German-British team led by researchers of the Max Planck Institute for Chemistry in Mainz and the University of Heidelberg, recently discovered that methane in plants is produced from the amino acid methionine, which all living organisms need for the building of proteins.


Researchers grow tobacco plants in a sealed container and add the amino acid methionine to it.

Frederik Althoff


The sources of the greenhouse gas methan

MPI or Chemistry

The scientists also propose a mechanism which could explain the abiotic production of methane, i.e. without the aid of enzymes, in plant cells. Already in 2006, the Max Planck researchers discovered that plants can release the gas. However, it remained unclear how the hydrocarbons were created in the plants.

Researchers have now discovered that methane is also released from fungi. Until a few years ago, it was only known that the gas is formed naturally in volcano eruptions, forest fires and by microorganisms which metabolize without oxygen.

The traces of methane in the atmosphere are small but they have a great impact on climate. After all, it’s greenhouse effect is 25 times greater than that of carbon dioxide. This means that when Frank Keppler, together with his working group from the Max Planck Institute for Chemistry and the Ruprecht-Karls University of Heidelberg discovered new sources of methane, it is also relevant to the understanding of the climate. If nothing else, the researchers broke down the biology dogma, when a few years ago, they discovered that methane is not only produced by microorganisms but also, especially now, by oxygen.

As happens most of the time when a researcher challenges a doctrine that has been accepted for decades, some experts have difficulties in accepting the new point of view. The Mainz researchers, however, can now refute one argument of the skeptics. They have not only identified the sulphur containing amino acid methionine as a substance that emits the environment damaging gas, but also provide indications about how this could be happening. “Some critics held it against us that we could not explain this previously,” says Frank Keppler.

Labeled methionine reveals the plant methane source

In order to get to the bottom of the methane source, Keppler and his colleagues took two approaches. Firstly, they infiltrated tobacco plant leafs with specially labeled methionine and let the offshoots grow on a culture medium with the prepared methionine in further experiments. The amino acid in the methyl group which scientist considered could be a precursor for methane, received a particularly high amount of carbon-13. This heavy carbon isotope can be clearly differentiated from ordinary carbon-12 in appropriate analyses. “We then found the labeled carbon atom in the methane which was emitted from the plants,” says Frank Keppler.

Secondly, the researchers conducted test-tube experiments, in an aqueous solution - an realistic scenario, as most plant cells largely consist of water. They combined various methylated substances, which contain a methyl group derived from methane such as for example methionine, dimethyl sulphoxide or lecithin with iron ions, ascorbic acid and hydrogen peroxide. The latter are also responsible for the incorporation or removal of methyl groups in other molecules in plants, fungi and animals. In the experiments methane was formed from methionine and a few other sulphur containing substances which, however, are not found in plants - this happened by abiotic means, i.e. without any biochemical addition of enzymes.

“Apparently the linking of the methyl group with another sulphur atom is a prerequisite for this,” says Frank Keppler. “Methane was only produced in noteworthy quantities in such substances.” The hydrocarbon was also split off in the form of dimethyl sulphoxide. “In plants this does not play a role, however in algae this could be an important chemical precursor from which methane is emitted,” says Keppler. “This finding could be of great assistance in explaining the methane-ocean paradox.” A considerable amount of methane is emitted from the world’s oceans, although the oceans have a high oxygen content. Biologists cannot explain this as long as they accept the assumption that microorganisms only produce methane when no oxygen is available.

Methane, a coincidence or waste product?

“We have not proven yet if the abiotic mechanism which we observed in the test-tubes also really works like this in plants,” says Frank Keppler. “This is what we want to find out in future work.” By identifying methionine as the chemical precursor for greenhouse gas, they already took the first step. At the moment it is also still unclear if methane forms in plants by coincidence, as a result of the required substances coming together in their cells at this particular point in time. Or whether it is a waste product, so to say, from a reaction of which the other products are important for the metabolism of plants.

However, it is already evident that plants contain other, previously unknown sources of greenhouse gases, in addition to methionine. For example, in fungi, methane also forms from methionine. This was recently proven by researchers led by Frank Keppler. In addition, the gas is also produced in plants in other ways. In earlier works, researchers observed that UV light releases methane from plant pectin. This photochemical mechanism plays an important role in the decomposition of dead plant material, while the process observed now, occurs in living plants.

It is not yet possible to assess the quantities of methane emitted from the sources that Frank Keppler and his colleagues have found in plants, fungi and possibly also animals. Consequently, it is also not yet clear what role these methane emissions play with regard to the climate. Researchers will only be able to present reliable prognoses about this once they have found and understood all previously unknown methane sources, when they know which factors, as for example UV radiation or oxygen content in the environment, impacts on the emission of methane. This is exactly what the researchers led by Frank Keppler are working on. (PH)

Original Publication

Frederik Althoff, Kathrin Benzing, Peter Comba, Colin McRoberts, Derek R. Boyd, Steffen Greiner und Frank Keppler
Abiotic methanogenesis from organosulphur compounds under ambient conditions
Nature Communications, 24. Juni 2014; doi:10.1038/ncomms5205

Dr. Susanne Benner | Max-Planck-Institut für Chemie

Further reports about: Max-Planck-Institut acid amino fungi greenhouse methionine methyl microorganisms

More articles from Life Sciences:

nachricht Another piece of Ebola virus puzzle identified
17.01.2019 | Texas Biomedical Research Institute

nachricht New scale for electronegativity rewrites the chemistry textbook
17.01.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>