Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk news: Understanding organ placement

09.01.2004


Salk study uncovers new information about organ placement



A Salk Institute team of biologists, mathematicians, and physicists has uncovered a novel paradigm for cell communication that provides new insights into the complex question of how the body determines where organs are placed.

The study focused on a fundamental question: how the body tells left from right. Although humans look fairly symmetric on the outside, their inner organs are placed quite asymmetrically; for example, the heart points to the left and the liver lies to the right side.


"We know that in the phase of development, there is a genetic cascade that leads to the proper placement of organs. If that cascade is disrupted, the results can lead to major problems or be fatal," said Salk Professor Juan Carlos Izpisúa Belmonte, who published the findings in the January 8 issue of Nature. Still, scientists did not have a clear understanding of what triggers the genetic cascade that defines organ placement. Izpisúa Belmonte’s group focused on the activity of the Notch pathway, an important player during embryo development and also during tumorigenesis, and a key factor for proper left-right asymmetry, as the same group and others had learned earlier this year.

"We knew that Notch activity was necessary for the normal, left-sided expression, but we were clueless as to what was activating Notch preferentially on the left side," said Angel Raya, lead author of the paper. "We examined several factors known to participate early in the establishment of the left-right axis, but none was responsible for what we were seeing."

Izpisúa Belmonte and his team characterized a highly complex chain of events leading to Notch activation, and resorted to mathematics to model the dynamics of this process. The model allowed the team to perform thousands of experiments in the computer (simulations), and pinpoint the factors most likely to regulate Notch activity in the specific fashion seen in the embryo.

"The model pointed in the direction of extracellular calcium, and we were absolutely thrilled when we visualized that, indeed, extracellular calcium accumulated normally on the left side of the embryo. The mathematical model that we developed saved us years of bench work and led to new insights about a biological problem," said Izpisúa Belmonte. "We are very excited about this multidisciplinary approach to biology, and we believe that collaborative approaches between biologists, mathematicians, and physicists working together will lead to long-term breakthroughs in biological research."


The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent, nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. The Institute was founded in 1960 by Jonas Salk, M.D., with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Robert Bradford | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Interdisciplinary Research:

nachricht Decoding the regulation of cell survival - A major step towards preventing neurons from dying
04.10.2018 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht New Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI)
28.09.2018 | Technische Universität Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>