Chemists crack secrets of nature’s super glue

Common blue mussel (Mytilus edulis) hangs tough after a night adhering to otherwise "non-stick" Teflon®. <br>Credit: Jonathan Wilker of Purdue University, NSF

Researchers have discovered that iron in seawater is the key binding agent in the super-strong glues of the common blue mussel, Mytilus edulis. This is the first time researchers have determined that a metal such as iron is critical to forming an amorphous, biological material.

In addition to using the knowledge to develop safer alternatives for surgical and household glues, the researchers are looking at how to combat the glue to prevent damage to shipping vessels and the accidental transport of invasive species, such as the zebra mussel that has ravaged the midwestern United States.

National Science Foundation CAREER awardee Jonathan Wilker, Mary Sever and their colleagues at Purdue University announce their discovery in the Jan. 12 issue of Angewandte Chemie.

En route to crafting synthetic versions of the glue, the researchers discovered that bivalves extract the metal iron from the surrounding seawater and use it to join proteins together, linking the fibrous molecules into a strong, adhesive mesh. The 800 mussels in Wilker’s laboratory have an uncanny ability to stick to almost anything, even Teflon®.

Comment from Wilker regarding research:

“Mussel glues present the first identified case in which transition metals are essential to the formation of a non crystalline biological material,” says NSF CAREER awardee Jonathan Wilker of Purdue University.

“We are curious as to whether or not this newly discovered, metal- mediated protein cross-linking mechanism of material formation is a prevalent theme in biology. We will be exploring systems such as barnacle cement, kelp glue and oyster cement to see how other biomaterials are produced,” says NSF CAREER awardee Jonathan Wilker of Purdue University.

“The biological origin of this glue and the ability to stick to nearly all surfaces invite applications such as the development of surgical adhesives,” says NSF CAREER awardee Jonathan Wilker of Purdue University.

“Understanding how marine glues are formed could be key to developing surfaces and coatings to prevent adhesion processes. Current antifouling paints rely upon releasing copper into surrounding waters, thereby killing barnacles in their larval state. We are hoping our results will help make antifouling paints that do not require the release of toxins into the marine environment,” says NSF CAREER awardee Jonathan Wilker of Purdue University.

NSF comments regarding the research discovery and the Wilker group:

“It appears that the strength, sticking power and endurance of these extraordinary biological materials may derive from inorganic chemistry,” says chemist Mike Clarke, the NSF program officer who oversees Wilker’s award.

“Proteins often rely on metal ions to tie them together and provide stability, but this is the first time that a transition metal ion has been determined to be an integral part of a biological material,” says chemist Mike Clarke, the NSF program officer who oversees Wilker’s award.

“The research wonderfully illustrates the potential for metal ions to strengthen materials by cross-linking polymer chains. More important to researchers is the tantalizing suggestion that the remarkable adhesive properties of these biological glues lie in an iron-dependent oxidation to radicals,” says chemist Mike Clarke, the NSF program officer who oversees Wilker’s award.

“This discovery could lead to the creation of unusual new materials with designed plasticity, strength and adhesiveness for household, structural and biological uses. Perhaps, these properties could even be made dependent upon electrochemical potential thereby creating new vistas for electronic materials,” says chemist Mike Clarke, the NSF program officer who oversees Wilker’s award.

Additional Resources:

NSF chemistry expert and program officer: Mike Clarke, 703-292- 4967, mclarke@nsf.gov
Principal Investigator: Jonathan Wilker, 765-496-3382, wilker@purdue.edu
Purdue University Media Officer: Chad Boutin, 765-494-2081, cboutin@purdue.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

MRI brain scan showing improved cognitive networks after spinal surgery

Meet the Brains Behind the Spinal Surgery & Cognitive Gains Study for the Elderly

Greifswald Publication in the International Journal of Surgery A research team from Greifswald was able to demonstrate that spinal surgeries can not only restore daily functions, for example by alleviating…

Wild Assamese macaques study on maternal stress and offspring stress system

Early Pregnancy Maternal Stress Influences Primate Offspring’s Development

Long-term study on wild monkeys in Thailand reveals health risks and opportunities for intervention Maternal stress hormone levels during early pregnancy can have a lasting effect on the stress system…

Electrochemical setup for CO2 reduction with nickel-copper catalyst

CO₂ Reduction in Exhaust Gases Breathes Life into Earth’s Climate

To protect the climate, the aim is to recover CO₂ from combustion processes for use as valuable materials. This is challenging because exhaust gases contain not only CO₂ but also…