Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can the sphinx keep its feet dry?

03.07.2002


The monuments of ancient Egypt may have stood for thousands of years in the desert sands, but now they face a new threat -- from rising groundwater.



Ayman Ahmed of the University of Sohag, Egypt, is working with Graham Fogg, professor of hydrology at the University of California, Davis, to study the problem and find ways to solve it.

Preliminary findings by Ahmed and Fogg indicate that farming, urbanization and residential housing near the temples are causing water tables to rise. When the water table rises, the groundwater comes closer to the foundations, columns and walls of the antiquities, causing structural damage. Water and salts weaken the sandstone structures.


"Probably the most dangerous factors affecting the pharaonic monuments are urbanization and agricultural development," Ahmed said. Damage to the monuments has worsened in the years since completion of the Aswan dam, allowing year-round irrigation of crops instead of seasonal flooding, said Fogg.

Ahmed and Fogg are using data from sites including the temples at Luxor and Karnak to build a computer model of how groundwater moves under the monuments. They hope to find ways to prevent or reduce the damage.

Ahmed approached Fogg’s group after concluding that UC Davis had one of the strongest hydrology programs in the world.

"It’s a fascinating problem," said Fogg.

Media contacts: Graham Fogg, Land, Air and Water Resources, 530-752-6810, gefogg@ucdavis.edu; Ayman Ahmed, Land, Air and Water Resources, aaahmed@ucdavis.edu; Sylvia Wright, News Service, 530-752-7704, swright@ucdavis.edu; Andy Fell, News Service, 530-752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!

More articles from Interdisciplinary Research:

nachricht OU study expands understanding of bacterial communities for wastewater treatment system
14.05.2019 | University of Oklahoma

nachricht How do muscle and tendon connections last a lifetime? Study in the fruit fly Drosophila
04.04.2019 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>