Can the sphinx keep its feet dry?

The monuments of ancient Egypt may have stood for thousands of years in the desert sands, but now they face a new threat — from rising groundwater.

Ayman Ahmed of the University of Sohag, Egypt, is working with Graham Fogg, professor of hydrology at the University of California, Davis, to study the problem and find ways to solve it.

Preliminary findings by Ahmed and Fogg indicate that farming, urbanization and residential housing near the temples are causing water tables to rise. When the water table rises, the groundwater comes closer to the foundations, columns and walls of the antiquities, causing structural damage. Water and salts weaken the sandstone structures.

“Probably the most dangerous factors affecting the pharaonic monuments are urbanization and agricultural development,” Ahmed said. Damage to the monuments has worsened in the years since completion of the Aswan dam, allowing year-round irrigation of crops instead of seasonal flooding, said Fogg.

Ahmed and Fogg are using data from sites including the temples at Luxor and Karnak to build a computer model of how groundwater moves under the monuments. They hope to find ways to prevent or reduce the damage.

Ahmed approached Fogg’s group after concluding that UC Davis had one of the strongest hydrology programs in the world.

“It’s a fascinating problem,” said Fogg.

Media contacts: Graham Fogg, Land, Air and Water Resources, 530-752-6810, gefogg@ucdavis.edu; Ayman Ahmed, Land, Air and Water Resources, aaahmed@ucdavis.edu; Sylvia Wright, News Service, 530-752-7704, swright@ucdavis.edu; Andy Fell, News Service, 530-752-4533, ahfell@ucdavis.edu

Media Contact

Andy Fell EurekAlert!

All latest news from the category: Interdisciplinary Research

News and developments from the field of interdisciplinary research.

Among other topics, you can find stimulating reports and articles related to microsystems, emotions research, futures research and stratospheric research.

Back to home

Comments (0)

Write a comment

Newest articles

Researchers shrink camera to the size of a salt grain

Micro-sized cameras have great potential to spot problems in the human body and enable sensing for super-small robots, but past approaches captured fuzzy, distorted images with limited fields of view….

World-first product will be a lifesaving traffic stopper

Game-changing technology to design traffic lights that absorb kinetic energy, stopping them from crumpling when hit by a vehicle, will prevent thousands of fatalities and injuries each year and make…

Scientists capture electron transfer image in electrocatalysis process

The involvement between electron transfer (ET) and catalytic reaction at electrocatalyst surface makes electrochemical process challenging to understand and control. How to experimentally determine ET process occurring at nanoscale is…

Partners & Sponsors