Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Of Pittsburgh Medical Center studying promising new imaging technology

18.02.2004


New technology developed by GE may help radiation oncologists more accurately target tumors



A new imaging technology developed by GE Medical Systems and currently being evaluated at the University of Pittsburgh Medical Center (UPMC) may allow radiation oncologists to precisely track tumor movement and avoid excess doses of radiation for patients under treatment for cancer. Preliminary results at UPMC demonstrate that Advantage™ 4D (Adv4D) limits the exposure of radiation to healthy tissue surrounding a tumor by allowing radiation oncologists to precisely visualize and assess its structure and movement.

"One of the challenges of treatment planning for radiation therapy is pinpointing radiation precisely to target a tumor and decreasing the amount of healthy tissue that may be exposed to radiation," said Andrew Wu, Ph.D., director of medical physics at UPMC. "Tumors are akin to moving targets. As a patient inhales and exhales, the tumor moves, making it challenging to target the tumor and to avoid exposure of radiation to the area that surrounds the tumor."


According to Dr. Wu, Adv4D is promising because it is one of the first technologies of its kind to allow physicists to perform respiratory gating – precisely following the movement of a tumor according to a patient’s breathing cycle.

"What makes GE’s Advantage 4D CT respiratory gating system different than any other similar software is the ability to superimpose tumor or organ definitions over CT images in a movie loop," said Bob Beckett, global manager, CT oncology for GE Medical Systems. "This unique advantage allows doctors to confidently evaluate the effects of motion on target volumes to help ensure the tumor receives the full amount of the treatment dose."


UPMC is one of five centers across the country currently evaluating Adv4D. Results from the first 15 patients evaluated at UPMC indicate that the technology improves the ability to develop more precise treatment plans. Preliminary findings show that this technology incorporated with intensity modulated radiation therapy (IMRT) – a radiation technology that allows the delivery of extremely precise doses of radiation to destroy cancer cells while minimizing harm to surrounding normal and healthy tissues – may potentially allow lung and ovarian cancer patients to be treated with high precision and low complications.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Information Technology:

nachricht Three components on one chip
06.12.2018 | Universität Stuttgart

nachricht New quantum materials could take computing devices beyond the semiconductor era
04.12.2018 | University of California - Berkeley

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Proteins imaged in graphene liquid cell have higher radiation tolerance

10.12.2018 | Materials Sciences

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>