Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team finds better way to gauge the climate costs of land use change

09.01.2012
Those making land use decisions to reduce the harmful effects of climate change have focused almost exclusively on greenhouse gases – analyzing, for example, how much carbon dioxide is released when a forest is cleared to grow crops.
A new study in Nature Climate Change aims to present a more complete picture – to incorporate other characteristics of ecosystems that also influence climate.

“We know that forests store a lot of carbon and clearing a forest releases carbon dioxide into the atmosphere and contributes to climate change,” said University of Illinois postdoctoral researcher Kristina Anderson-Teixeira, who pioneered the new approach with plant biology and Energy Biosciences Institute professor Evan DeLucia. “But ecosystems provide other climate regulation services as well.”

The climate effects of a particular ecosystem also depend on its physical attributes, she said. One such attribute is its reflectivity, a quality climate scientists call albedo.

“If you think of an open snow-covered field or bare sandy soil, that ground acts somewhat like a mirror, reflecting solar radiation back to space,” Anderson-Teixeira said. “In contrast, a forest is dark and absorbs a lot of solar radiation. In that sense, any type of vegetation is going to warm the land surface to some extent.”

Another factor that should be considered is an ecosystem’s ability to release heat through the evaporation of water. The more water available in an ecosystem, the more it cools itself by evapotranspiration or, as DeLucia puts it, “planetary sweating.”

“It takes a great deal of energy to convert liquid water to vapor, and this transition cools the soil and the surface of leaves as water evaporates, in the same way that sweating cools your skin,” said DeLucia, who also is an affiliate of the Institute for Genomic Biology at Illinois.

Scientists have known about biophysical effects for a long time, Anderson-Teixeira said. “But the challenge has been to incorporate them into a single metric that will help us design land-use policies that are going to help mitigate – and not exacerbate – climate change.”

To tackle this problem, Anderson-Teixeira and DeLucia teamed with University of Minnesota professors Peter Snyder and Tracy Twine; professor Santiago Cuadra, of the Federal Center of Technological Education in Rio de Janeiro; and professor Marcos Costa, of the Ministry of Science, Technology and Innovation in Brazil.

The researchers compiled data to calculate the “greenhouse gas value” of 18 “ecoregions” across North and South America, and also modeled the ecoregions’ biophysical characteristics. They looked at several types of forest, as well as grassland, tundra, tropical savanna and agricultural crops, such as soy, sugarcane, corn, miscanthus and switchgrass.

“The challenge of combining the greenhouse gases with the biophysical effects is that they operate over very different spatial and temporal scales,” Anderson-Teixeira said. To integrate the two, the researchers first divided the local biophysical effects by the global land surface area. They then combined the measures and converted the values into carbon dioxide equivalents, a common currency in the world of climate mitigation.

The researchers found that biophysical attributes make a tropical rainforest even more valuable for protection against climate warming, but lessen the climate value of boreal (evergreen) forests in Canada.

Any forest provides a climate service by storing carbon, the researchers said, but forests also absorb more solar radiation than bare ground. Tropical forests cool the land by evapotranspiration, but northern boreal forests have much lower evapotranspiration and are dark in comparison to open spaces. These factors give Amazon forests “the highest climate regulation value of all the ecoregions we studied,” Anderson-Teixeira said.

Crops also have an enhanced climate-regulating value when their biophysical attributes are considered, DeLucia said.

“When considering only their effect on greenhouse gases, annually tilled row crops like corn tend to have a warming effect by contributing large quantities of nitrous oxide and carbon dioxide to the atmosphere,” he said. “But when you factor in the ability to reflect solar energy and high rates of evapotranspiration, the net effect (compared with bare ground) is cooling.”

Ecosystems perform a lot of other services of importance to humans and the planet, DeLucia said.

“While the climate-regulating value that we propose in this paper captures how ecosystems affect climate, it is important to note that this is only one of many services ecosystems provide,” he said. “Ultimately the value of any given ecosystem to society must include these other services, including biodiversity, water purification and the production of food and fiber, to name just a few.”

The researchers note that theirs is not the only valid way to quantify the climate services various ecosystems offer. But it captures more of the picture than previous methods have.

“We hope that this approach will help to design land-use policies that protect the climate,” Anderson-Teixeira said.

Editor’s notes: To reach Evan DeLucia, call 217- 333-6177; email delucia@illinois.edu.
To reach Kristina Anderson-Teixeira,
email kateixei@illinois.edu.
The paper, “Climate Regulation Services of Natural and Agricultural Ecoregions of the Americas,” is available from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>