Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control of methane emissions would reduce both global warming and air pollution, researchers find

09.10.2002


Both air pollution and global warming could be reduced by controlling emissions of methane gas, according to a new study by scientists at Harvard University, the Argonne National Laboratory, and the Environmental Protection Agency. The reason, they say, is that methane is directly linked to the production of ozone in the troposphere, the lowest part of Earth’s atmosphere, extending from the surface to around 12 kilometers [7 miles] altitude. Ozone is the primary constituent of smog and both methane and ozone are significant greenhouse gases.



A simulation based upon emissions projections by the Intergovernmental Panel on Climate Change (IPCC) predicts a longer and more intense ozone season in the United States by 2030, despite domestic emission reductions, the researchers note. Mitigation should therefore be considered on a global scale, the researchers say, and must take into account a rising global background level of ozone. Currently, the U.S. standard is based upon 84 parts per billion by volume of ozone, not to be exceeded more than three times per year, a standard that is not currently met nationwide. In Europe, the standard is much stricter, 55-65 parts of ozone per billion by volume, but these targets are also exceeded in many European countries.

Writing this month in the journal Geophysical Research Letters, Arlene M. Fiore and her colleagues say that one way to simultaneously decrease ozone pollution and greenhouse warming is to reduce methane emissions. Ozone is formed in the troposphere by chemical reactions involving methane, other organic compounds, and carbon monoxide, in the presence of nitrogen oxides and sunlight. Methane is known to be a major source of ozone throughout the troposphere, but is not usually considered to play a key role in the production of ozone smog in surface air, because of its long lifetime.


Sources of manmade methane include, notably, herds of cattle and other ungulates, rice production, and leaks of natural gas from pipelines, according to the IPCC. In addition, natural sources of methane include wetlands, termites, oceans, and gas hydrate nodules on the sea floor.

In a baseline study in 1995, 60 percent of methane emissions to the atmosphere were the result of human activity. The IPCC’s A1 scenario, which Fiore characterizes as "less optimistic in terms of anticipated emissions than a companion B1 scenario," posits economic development as the primary policy influencing future trends of manmade emissions in most countries. Under A1, emissions would increase globally from 1995 to 2030, but their distribution would shift. Manmade nitrogen oxides would decline by 10 percent in the developed world, but increase by 130 percent in developing countries. During the same period, methane emissions would increase by 43 percent globally, according to the A1 scenario.

The researchers find that a reduction of manmade methane by 50 percent would have a greater impact on global tropospheric ozone than a comparable reduction in manmade nitrogen oxide emissions. Reducing surface nitrogen oxide emissions does effectively improve air quality by decreasing surface ozone levels, but this impact tends to be localized, and does not yield much benefit in terms of greenhouse warming. Reductions in methane emissions would, however, help to decrease greenhouse warming by decreasing both methane and ozone in the atmosphere world-wide, and this would also help to reduce surface air pollution.

Both in the United States and Europe, aggressive programs of emission controls aimed at lowering ozone-based pollution may be offset by rising emissions of methane and nitrogen oxides from developing countries, the researchers write. Pollution could therefore increase, despite these controls, and the summertime pollution season would actually lengthen, according to the simulation under the A1 scenario.


The study was funded by the Environmental Protection Agency (EPA), National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF).

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>