Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control of methane emissions would reduce both global warming and air pollution, researchers find

09.10.2002


Both air pollution and global warming could be reduced by controlling emissions of methane gas, according to a new study by scientists at Harvard University, the Argonne National Laboratory, and the Environmental Protection Agency. The reason, they say, is that methane is directly linked to the production of ozone in the troposphere, the lowest part of Earth’s atmosphere, extending from the surface to around 12 kilometers [7 miles] altitude. Ozone is the primary constituent of smog and both methane and ozone are significant greenhouse gases.



A simulation based upon emissions projections by the Intergovernmental Panel on Climate Change (IPCC) predicts a longer and more intense ozone season in the United States by 2030, despite domestic emission reductions, the researchers note. Mitigation should therefore be considered on a global scale, the researchers say, and must take into account a rising global background level of ozone. Currently, the U.S. standard is based upon 84 parts per billion by volume of ozone, not to be exceeded more than three times per year, a standard that is not currently met nationwide. In Europe, the standard is much stricter, 55-65 parts of ozone per billion by volume, but these targets are also exceeded in many European countries.

Writing this month in the journal Geophysical Research Letters, Arlene M. Fiore and her colleagues say that one way to simultaneously decrease ozone pollution and greenhouse warming is to reduce methane emissions. Ozone is formed in the troposphere by chemical reactions involving methane, other organic compounds, and carbon monoxide, in the presence of nitrogen oxides and sunlight. Methane is known to be a major source of ozone throughout the troposphere, but is not usually considered to play a key role in the production of ozone smog in surface air, because of its long lifetime.


Sources of manmade methane include, notably, herds of cattle and other ungulates, rice production, and leaks of natural gas from pipelines, according to the IPCC. In addition, natural sources of methane include wetlands, termites, oceans, and gas hydrate nodules on the sea floor.

In a baseline study in 1995, 60 percent of methane emissions to the atmosphere were the result of human activity. The IPCC’s A1 scenario, which Fiore characterizes as "less optimistic in terms of anticipated emissions than a companion B1 scenario," posits economic development as the primary policy influencing future trends of manmade emissions in most countries. Under A1, emissions would increase globally from 1995 to 2030, but their distribution would shift. Manmade nitrogen oxides would decline by 10 percent in the developed world, but increase by 130 percent in developing countries. During the same period, methane emissions would increase by 43 percent globally, according to the A1 scenario.

The researchers find that a reduction of manmade methane by 50 percent would have a greater impact on global tropospheric ozone than a comparable reduction in manmade nitrogen oxide emissions. Reducing surface nitrogen oxide emissions does effectively improve air quality by decreasing surface ozone levels, but this impact tends to be localized, and does not yield much benefit in terms of greenhouse warming. Reductions in methane emissions would, however, help to decrease greenhouse warming by decreasing both methane and ozone in the atmosphere world-wide, and this would also help to reduce surface air pollution.

Both in the United States and Europe, aggressive programs of emission controls aimed at lowering ozone-based pollution may be offset by rising emissions of methane and nitrogen oxides from developing countries, the researchers write. Pollution could therefore increase, despite these controls, and the summertime pollution season would actually lengthen, according to the simulation under the A1 scenario.


The study was funded by the Environmental Protection Agency (EPA), National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF).

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org/

More articles from Ecology, The Environment and Conservation:

nachricht Road access for all would be costly, but not so much for the climate
10.07.2020 | Potsdam-Institut für Klimafolgenforschung

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>