Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar power's future brawl

02.10.2013
Simulations help North and South Dakota researchers decide which technology would make a better solar collector, quantum dot or nanowire

A trio of researchers at North Dakota State University and the University of South Dakota have turned to computer modeling to help decide which of two competing materials should get its day in the sun as the nanoscale energy-harvesting technology of future solar panels -- quantum dots or nanowires.


Amorphous Silicon nanowire (yellow network) facilitates harvesting of solar energy in the form of a photon (wavy line). In the process of light absorption a pair of mobile charge carriers is created (red clouds depict an electron smeared in space, while the blue clouds visualize the so-called hole which is a positively charged carrier). The energy of their directed motion is then transformed into electricity. Electron and hole charge distributions are often located in different regions of space due to multiple structural defects in amorphous silicon nanowires.

Credit: A.Kryjevski, S.Kilina and D.Kilin/JRSE

Andrei Kryjevski and his colleagues, Dimitri Kilin and Svetlana Kilina, report in AIP Publishing's Journal of Renewable and Sustainable Energy that they used computational chemistry models to predict the electronic and optical properties of three types of nanoscale (billionth of a meter) silicon structures with a potential application for solar energy collection: a quantum dot, one-dimensional chains of quantum dots and a nanowire. The ability to absorb light is substantially enhanced in nanomaterials compared to those used in conventional semiconductors. Determining which form -- quantum dots or nanowire -- maximizes this advantage was the goal of the numerical experiment conducted by the three researchers.

"We used Density Functional Theory, a computational approach that allows us to predict electronic and optical properties that reflect how well the nanoparticles can absorb light, and how that effectiveness is affected by the interaction between quantum dots and the disorder in their structures," Kryjevski said. "This way, we can predict how quantum dots, quantum dot chains and nanowires will behave in real life even before they are synthesized and their working properties experimentally checked."

The simulations made by Kryjevski, Kilin and Kilina indicated that light absorption by silicon quantum dot chains significantly increases with increased interactions between the individual nanospheres in the chain. They also found that light absorption by quantum dot chains and nanowires depends strongly on how the structure is aligned in relation to the direction of the photons striking it. Finally, the researchers learned that the atomic structure disorder in the amorphous nanoparticles results in better light absorption at lower energies compared to crystalline-based nanomaterials.

"Based on our findings, we believe that putting the amorphous quantum dots in an array or merging them into a nanowire are the best assemblies for maximizing the efficiency of silicon nanomaterials to absorb light and transport charge throughout a photovoltaic system," Kryjevski said. "However, our study is only a first step in a comprehensive computational investigation of the properties of semiconductor quantum dot assemblies.

"The next steps are to build more realistic models, such as larger quantum dots with their surfaces covered by organic ligands and simulate the processes that occur in actual solar cells," he added.

The article, "Amorphous Silicon Nanomaterials: Quantum Dots Versus Nanowires" by Andrei Kryjevski, Dmitri Kilin and Svetlana Kilina, appears in the Journal of Renewable and Sustainable Energy. See: http://dx.doi.org/10.1063/1.4817728

ABOUT THE JOURNAL

The Journal of Renewable and Sustainable Energy is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy that apply to the physical science and engineering communities. See: http://jrse.aip.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Power and Electrical Engineering:

nachricht A paper battery powered by bacteria
21.08.2018 | American Chemical Society

nachricht Converting wind power for storage purposes
21.08.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>