Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Grid Test as Part of the Energy Transition

23.12.2013
At a special lab in Erlangen, Siemens' global research unit Corporate Technology (CT) is testing how smart grids will work in the future.

As reported in the research magazine Pictures of the Future, researchers in the 170 square meter lab can simulate almost any smart grid because the facility is equipped with control cabinets full of batteries as well as with a cogeneration plant, an emergency power unit, an adjustable local grid transformer, various loads and converters, two refrigeration units, and a water purification plant.



The team can create a wide variety of miniature versions of smart grids. That's because the lab's diesel generator can also take on the roles of a combined-cycle power plant or a biomass reactor. In these simulations, the ratio of fluctuating to conventional sources of energy corresponds to that of the real-life electricity market. Smart grids will become common in a few years. When fluctuating sources of energy further increase their share of the grid, smart control systems have to ensure that the distributed energy producers interact perfectly with large power plants, as otherwise there is a risk of instabilities and even power outages that can cause considerable damage.

This is exactly what the CT researchers in Erlangen are preventing in their tests. Among other things, they simulate a high level of incident solar radiation so that the photovoltaic system's converter supplies a lot of electricity. When this causes an excess supply of energy in the grid, voltage and frequency increase. To deal with this situation, the researchers adjust the converter's parameters so that they help stabilize the grid instead of unrestrainedly feeding their maximum output into the power network.

The test lab also has a scenario in which the power grid breaks down. The distributed energy producers such as the battery and the photovoltaic system then have to get the power grid up and running again. To perform such a black start, the researchers synchronize the various components so that they all raise the supply voltage to the specified value at the same rate and the power demand of the associated loads is equally distributed between the various energy sources. The researchers set the internal control units so that the converters synchronize themselves on the basis of the voltage and frequency information and ensure stable operation.

The work at the lab in Erlangen provides researchers with a foretaste of the challenges that grid operators face during Germany's energy transition. The operators have to connect countless photovoltaic systems, wind turbines, and biomass reactors with conventional power stations and energy storage systems and create a stable power grid. From 2011 until the fall of 2013, Siemens and the power utility company Allgäuer Überlandwerk studied how this could look in practice. To do this, the two partners examined the network around the village of Wildpoldsried in Bavaria. Here, the village's 2,500 inhabitants sometimes produce five times as much electricity from renewable sources as they themselves consume.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Saving energy by taking a close look inside transistors
10.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Tandem Solar Cells – Record Efficiency for Silicon-based Multi-junction Solar Cell
08.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>