Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Grid Test as Part of the Energy Transition

05.02.2013
Siemens and Stadtwerke Krefeld AG (SWK) are converting the electricity network of Wachtendonk, which is located in Germany on the Lower Rhine, into a smart grid.

The two companies want to test the smart grid's behavior and technology in practice. Due to its large share of renewable sources of energy, Wachtendonk serves as a sort of role model for Germany's energy transition.



The town's 8,000 inhabitants get about 80 percent of their electricity from photovoltaic systems or other sources of renewable energy.

As a result of the energy transition, Germany's power grid is being transformed from a demand-controlled "one-way street" into a bidirectional-flow network. Energy can be fed into and out of the system at a variety of locations. However, the amounts of wind and solar power supplied vary. The result is voltage fluctuations in the grid and an increased risk of a power outage in parts of the grid under high load. The power grid of the future will have to offset such fluctuations better by actively monitoring voltages and automatically regulating them.

As part of its grid modernization program, SWK installed empty data transmission line pipes in the Wachtendonk grid in 2010 and ensured that 52 of the 105 local electrical substations were capable of receiving smart grid components. The company is now installing smart meters from Siemens in numerous distribution boxes and at 100 of the town's households.

The smart meters have a power snapshot function, which enables them to take "snapshots" of the current grid condition in addition to supplying data on electricity consumption. The meters also transmit the measurement values to local smart substations, which consist of compact medium-voltage switchgear and adjustable local grid transformers, as well as of remote control systems, grid protection technology, and transmission systems.

State-of-the-art sensor and communications technology makes the substations "smart." The integrated adjustable local grid transformers from Siemens stabilize the grid at the interface between low-voltage and medium-voltage networks. On a cloudless day, for example, the data from the smart meters might show that voltage is increasing while electricity consumption is low.

This would mean that photovoltaic systems are feeding large amounts of power into the grid and the transformer would consequently adjust the voltage. Smart, automated grids are part of Siemens' environmental portfolio, with which the company generated approximately €33 billion in sales in business year 2012.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Agricultural insecticide contamination threatens U.S. surface water integrity at the national scale
06.12.2018 | Universität Koblenz-Landau

nachricht Improving hydropower through long-range drought forecasts
06.12.2018 | Schweizerischer Nationalfonds SNF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>