Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simplifying solar cells with a new mix of materials

28.01.2016

Berkeley Lab-led research team creates a high-efficiency device in 7 steps

An international research team has simplified the steps to create highly efficient silicon solar cells by applying a new mix of materials to a standard design. Arrays of solar cells are used in solar panels to convert sunlight to electricity.


In this illustration, the top images show a cross-section of a solar cell design, called DASH, that uses a combination of moly oxide and lithium fluoride. This combination of materials allows the device to achieve high efficiency in converting sunlight to energy without the need for a process known as doping. The bottom images shows the dimensions of the DASH solar cell components.

Credit: (Nature Energy: 10.1038/nenergy.2015.31)

The special blend of materials--which could also prove useful in semiconductor components--eliminates the need for a process known as doping that steers the device's properties by introducing foreign atoms to its electrical contacts. This doping process adds complexity to the device and can degrade its performance.

"The solar cell industry is driven by the need to reduce costs and increase performance," said James Bullock, the lead author of the study, published this week in Nature Energy. Bullock participated in the study as a visiting researcher at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley.

"If you look at the architecture of the solar cell we made, it is very simple," said Bullock, of Australian National University (ANU). "That simplicity can translate to reduced cost."

Other scientists from Berkeley Lab, UC Berkeley, ANU and The Swiss Federal Institute of Technology of Lausanne (EPFL) also participated in the study.

Bullock added, "Conventional silicon solar cells use a process called impurity doping, which does bring about a number of limitations that are making further progress increasingly difficult."

Most of today's solar cells use crystalline silicon wafers. The wafer itself, and sometimes the layers deposited on the wafer, are doped with atoms that either have electrons to spare when they bond with silicon atoms, or alternatively generate electron deficiencies, or "holes." In both cases, this doping enhances electrical conductivity.

In these devices, two types of dopant atoms are required at the solar cell's electrical contacts to regulate how the electrons and holes travel in a solar cell so that sunlight is efficiently converted to electrical current that flows out of the cell.

Crystalline silicon-based solar cells with doped contacts can exceed 20 percent efficiency--meaning more than 20 percent of the sun's energy is converted to electricity. A dopant-free silicon cell had not previously exceeded 14 percent efficiency.

The new study, though, demonstrated a dopant-free silicon cell, referred to as a DASH cell (dopant free asymmetric heterocontact), with an average efficiency above 19 percent. This increased efficiency is a product of the new materials and a simple coating process for layers on the top and bottom of the device. Researchers showed it's possible to create their solar cell in just seven steps.

In this study, the research team used a crystalline silicon core (or wafer) and applied layers of dopant-free type of silicon called amorphous silicon.

Then, they applied ultrathin coatings of a material called molybdenum oxide, also known as moly oxide, at the sun-facing side of the solar cell, and lithium fluoride at the bottom surface. The two layers, having thicknesses of tens of nanometers, act as dopant-free contacts for holes and electrons, respectively.

"Moly oxide and lithium fluoride have properties that make them ideal for dopant-free electrical contacts," said Ali Javey, program leader of Electronic Materials at Berkeley Lab and a professor of Electrical Engineering and Computer Sciences at UC Berkeley.

Both materials are transparent, and they have complementary electronic structures that are well-suited for solar cells.

"They were previously explored for other types of devices, but they were not carefully explored by the crystalline silicon solar cell community," said Javey, the lead senior author of the study.

Javey noted that his group had discovered the utility of moly oxide as an efficient hole contact for crystalline silicon solar cells a couple of years ago. "It has a lot of defects, and these defects are critical and important for the arising properties. These are good defects," he said.

Stefaan de Wolf, another author who is team leader for crystalline silicon research at EPFL in Neuchâtel, Switzerland, said, "We have adapted the technology in our solar cell manufacturing platform at EPFL and found out that these moly oxide layers work extremely well when optimized and used in combination with thin amorphous layer of silicon on crystalline wafers. They allow amazing variations of our standard approach."

In the study, the team identified lithium fluoride as a good candidate for electron contacts to crystalline silicon coated with a thin amorphous layer. That layer complements the moly oxide layer for hole contacts.

The team used a room-temperature technique called thermal evaporation to deposit the layers of lithium fluoride and moly oxide for the new solar cell. There are many other materials that the research teams hopes to test to see if they can improve the cell's efficiency.

Javey said there is also promise for adapting the material mix used in the solar cell study to improve the performance of semiconductor transistors. "There's a critical need to reduce the contact resistance in transistors so we're trying to see if this can help."

###

Some off the work in this study was performed at The Molecular Foundry, a DOE Office of Science User Facility at Berkeley Lab.

This work was supported by the DOE Office of Science, Bay Area Photovoltaics Consortium (BAPVC); the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub; Office fédéral de l'énergie (OFEN); the Australian Renewable Energy Agency (ARENA) and the CSEM PV-center.

More information about Ali Javey's research is available here: http://nano.eecs.berkeley.edu/.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Glenn Roberts Jr.
geroberts@lbl.gov
510-486-5582

 @BerkeleyLab

http://www.lbl.gov 

Glenn Roberts Jr. | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

nachricht Generating electrical power from waste heat
10.07.2018 | DOE/Sandia National Laboratories

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

Im Focus: Probing nobelium with laser light

Sizes and shapes of nuclei with more than 100 protons were so far experimentally inaccessible. Laser spectroscopy is an established technique in measuring fundamental properties of exotic atoms and their nuclei. For the first time, this technique was now extended to precisely measure the optical excitation of atomic levels in the atomic shell of three isotopes of the heavy element nobelium, which contain 102 protons in their nuclei and do not occur naturally. This was reported by an international team lead by scientists from GSI Helmholtzzentrum für Schwerionenforschung.

Nuclei of heavy elements can be produced at minute quantities of a few atoms per second in fusion reactions using powerful particle accelerators. The obtained...

Im Focus: Asymmetric plasmonic antennas deliver femtosecond pulses for fast optoelectronics

A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 terahertz. This range in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Nanotechnology to fight cancer: From diagnosis to therapy

28.06.2018 | Event News

Biological Transformation: nature as a driver of innovations in engineering and manufacturing

28.06.2018 | Event News

 
Latest News

Project completion of 5G-CHARISMA: Successful Development of new Network Architectures for the 5G

11.07.2018 | Information Technology

Underlying mechanism discovered for magnetic effect in superconducting spintronics

11.07.2018 | Physics and Astronomy

Wetting of surfaces is surprisingly difficult to measure reliably

11.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>