Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rethinking wind power

26.02.2013
Harvard research suggests real-world generating capacity of wind farms at large scales has been overestimated
“People have often thought there’s no upper bound for wind power—that it’s one of the most scalable power sources,” says Harvard applied physicist David Keith. After all, gusts and breezes don’t seem likely to “run out” on a global scale in the way oil wells might run dry.

Yet the latest research in mesoscale atmospheric modeling, published today in the journal Environmental Research Letters, suggests that the generating capacity of large-scale wind farms has been overestimated.

Each wind turbine creates behind it a "wind shadow" in which the air has been slowed down by drag on the turbine's blades. The ideal wind farm strikes a balance, packing as many turbines onto the land as possible, while also spacing them enough to reduce the impact of these wind shadows. But as wind farms grow larger, they start to interact, and the regional-scale wind patterns matter more.

Keith’s research has shown that the generating capacity of very large wind power installations (larger than 100 square kilometers) may peak at between 0.5 and 1 watts per square meter. Previous estimates, which ignored the turbines' slowing effect on the wind, had put that figure at between 2 and 7 watts per square meter.

In short, we may not have access to as much wind power as scientists thought.

An internationally renowned expert on climate science and technology policy, Keith holds appointments as Gordon McKay Professor of Applied Physics at the Harvard School of Engineering and Applied Sciences (SEAS) and as Professor of Public Policy at Harvard Kennedy School. Coauthor Amanda S. Adams was formerly a postdoctoral fellow with Keith and is now assistant professor of geography and Earth sciences at the University of North Carolina at Charlotte.

"One of the inherent challenges of wind energy is that as soon as you start to develop wind farms and harvest the resource, you change the resource, making it difficult to assess what's really available," says Adams.

But having a truly accurate estimate matters, of course, in the pursuit of carbon-neutral energy sources. Solar, wind, and hydro power, for example, could all play roles in fulfilling energy needs that are currently met by coal or oil.

“If wind power’s going to make a contribution to global energy requirements that’s serious, 10 or 20 percent or more, then it really has to contribute on the scale of terawatts in the next half-century or less,” says Keith.

If we were to cover the entire Earth with wind farms, he notes, “the system could potentially generate enormous amounts of power, well in excess of 100 terawatts, but at that point my guess, based on our climate modeling, is that the effect of that on global winds, and therefore on climate, would be severe—perhaps bigger than the impact of doubling CO2.”

“Our findings don't mean that we shouldn’t pursue wind power—wind is much better for the environment than conventional coal—but these geophysical limits may be meaningful if we really want to scale wind power up to supply a third, let’s say, of our primary energy,” Keith adds.

And the climatic effect of turbine drag is not the only constraint; geography and economics matter too.

“It’s clear the theoretical upper limit to wind power is huge, if you don't care about the impacts of covering the whole world with wind turbines," says Keith. "What’s not clear—and this is a topic for future research—is what the practical limit to wind power would be if you consider all of the real-world constraints. You'd have to assume that wind turbines need to be located relatively close to where people actually live and where there's a fairly constant wind supply, and that they have to deal with environmental constraints. You can’t just put them everywhere.”

“The real punch line," he adds, "is that if you can’t get much more than half a watt out, and you accept that you can’t put them everywhere, then you may start to reach a limit that matters.”

In order to stabilize the Earth's climate, Keith estimates, the world will need to identify sources for several tens of terawatts of carbon-free power within a human lifetime. In the meantime, policymakers must also decide how to allocate resources to develop new technologies to harness that energy.

In doing so, Keith says, “It’s worth asking about the scalability of each potential energy source—whether it can supply, say, 3 terawatts, which would be 10 percent of our global energy need, or whether it’s more like 0.3 terawatts and 1 percent.”

“Wind power is in a middle ground,” he says. "It is still one of the most scalable renewables, but our research suggests that we will need to pay attention to its limits and climatic impacts if we try to scale it beyond a few terawatts."

The research was funded by the Natural Sciences and Engineering Research Council of Canada.
A video abstract by David Keith is available for viewing and download here:
http://iopscience.iop.org/1748-9326/8/1/015021/

Caroline Perry | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>