Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New form of compound stimulates research on hydrogen storage

05.12.2007
Research on hydrogen-fueled cars may be one step closer to application thanks to a new form of hydride discovered by scientists at the ESRF. The material, lithium borohydride, is a promising energy storage system: it contains 18 weight percents of hydrogen, which makes it attractive for use in hydrogen-fueled cars.

Its drawback is that it only releases hydrogen at quite high temperatures (above 300C). The team at the ESRF has found a new form of the compound that could possibly release hydrogen in mild conditions. This discovery, completely unexpected from the point of view of theoretical predictions, was published today as a Very Important Paper in Angewandte Chemie.

Automotive industry regards hydrogen as a perspective energy carrier. If a good hydrogen storage material will be developed, the petrol in cars can be replaced by clean hydrogen energy. Five kilograms of hydrogen would take you as far as twenty liters of petrol. Today there are several compounds of interest, which are known to either store relatively large amounts of hydrogen or release it easily, but none do both in a way suitable for practical application.

Researchers at the Swiss-Norwegian experimental stations (beamlines) at the ESRF are currently studying several compounds of light elements with hydrogen and the different forms they take at different pressure and temperature. Lithium borohydride, LiBH4, is one of the compounds they study as it has a high weight content of hydrogen (18%). The new form of this compound, which scientists have just discovered, is promising because it appears to be unstable. Until today, all the known forms of this material are too stable, which means that they don’t let the hydrogen go. “This one is really unexpected and very encouraging”, says Yaroslav Filinchuk, the corresponding author of the paper.

In order to obtain new forms of lithium borohydride, the team applied to the sample pressures up to 200,000 bar. The pressure of 200,000 bar applied to LiBH4 in the ESRF experiment is about 80 times bigger than the pressure exerted on Earth's crust by Mount Everest (the latter is roughly equal to 2.5 kbar). Although impressive, this figure is not a record - much higher pressures still can be reached in the lab using the same diamond anvil cell technique, but this was not necessary for this experiment.

Diffraction of synchrotron light was used to determine arrangement of atoms in the resulting materials. In this way two novel structures of lithium borohydride were found. One of them is truly unprecedented (image 1) and reveals strikingly short contacts between hydrogen atoms (image 2).

Combined experimental and theoretical efforts suggest that the new from of LiBH4 can release hydrogen at a lower temperature. Filinchuk explains that “the new form becomes even more attractive considering the fact it appears already at 10.000 bar, the pressure used by pharmaceutical companies to compress pellets”. The authors argue that this form can be stabilized by chemical substitutions even at ambient pressure. For now, the team’s next step is to apply chemical engineering to the compound to “freeze” the new form at ambient conditions and check whether it shows more favorable hydrogen storage properties than pure lithium borohydride.

Despite the fact that hydrogen is not well detected by X-rays in general, scientists managed to see it thanks to the high brilliance of the ESRF synchrotron light. Although theory failed to predict the novel structure, it fully supports this experimental finding. Therefore, this work ¬presents a breakthrough in experimental studies of hydrogen-rich system, explains the failure of the previous theoretical predictions and suggests the novel form of the compound to be instrumental in obtaining improved hydrogen storage materials.

Synchrotron radiation was recently successfully applied to potential hydrogen storage materials and it turns out to be more useful than generally expected for so light systems. The team at the Swiss-Norwegian Beam Lines at the ESRF will continue to exploit and develop this at first glance unexpected union.

Montserrat Capellas | alfa
Further information:
http://www.esrf.eu/news/pressreleases/hydrogen/hydrogen/

More articles from Power and Electrical Engineering:

nachricht Battery research at Graz University of Technology: new breakthroughs in research on super-batteries
25.04.2019 | Technische Universität Graz

nachricht Energy-saving new LED phosphor
24.04.2019 | Universität Innsbruck

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>