Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind power need not be backed up by an equal amount of reserve power

04.12.2007
International evaluation indicates:
ind power need not be backed up by an equal amount of reserve power

The production of wind power varies and is harder to forecast than the fluctuations in electricity demand. Adding large quantities of wind power to power systems is therefore challenging. The power system impacts of wind power were studied in international collaboration coordinated by VTT Technical Research Centre of Finland. The results indicate that the frequently stated claim of wind power requiring an equal amount of reserve power for back-up is not correct. A substantial adjustment tolerance is already built in to our power network, and the impacts of wind power fluctuations can be further balanced through a variety of measures.

The collaboration within the International Energy Agency (IEA) Implementing Agreement for Wind Energy, coordinated by VTT, has resulted in the publication of the first state-of-the-art report assessing the international experience gained on the system impacts of wind power.

The impact of a large share of wind power can be controlled by appropriate grid connection requirements, extension and enforcement of transmission networks as well as integration of wind power production and production forecasts into system and market operation. The state-of-the-art report presents the assessments of the impact of wind power on the reliability and costs of the power system conducted in different countries.

The assessments performed in different countries are often based on substantially different assumptions. Comparison of the studies showed that in particular the assumptions concerning the use of international transmission connections and the time scale of updating wind power forecasts had a major impact on the results.

The aggregation benefits of a power system covering a large area help in reducing wind power fluctuations and improve predictability. A large power system also has a larger amount of generation reserves available, and the increased regulation effort can be implemented cost-effectively. The transmission capacity between areas is crucial for the utilisation of the benefits arising from large production areas. An electricity market in which production forecasts can be updated a few hours ahead also helps in keeping down the forecast errors and thereby the costs of balance power.

The report contains a summary of the wind power impact assessments performed in 11 countries. The assessments are divided into three categories:
1. Additional costs arising from the balancing of wind power fluctuations
2. Grid reinforcement needs due to wind power
3. Capacity of wind power to replace other power plant capacity
With wind power penetrations amounting to 10–20% of the gross electricity demand, the additional costs (per MWh of wind power) arising from the balancing of wind power fluctuations are estimated to range between1–4 €/MWh. This is less than 10% of the long-term market value of electricity.

Current wind power technology makes it possible for wind power plants to support the grid in the event of faults such as significant voltage drops and to participate in voltage regulation. Wind power plants are also able to limit their production fluctuations. The grid reinforcement needs due to wind power vary in different countries depending on how far from the consumption centres the wind power plants are constructed and how strong the existing national grid is.

Even though wind power is mainly an energy resource that replaces fossil power generation, it can also be used for replacing existing power plant capacity. In areas where wind power production is high during peak demand, wind power can replace other capacity by up to 40% of the installed wind power capacity. However, when a larger share, more than 30%, of electricity is produced by wind power and in areas where the wind power production is low during peak demand, wind power can only replace other capacity by 5–10% of the wind power capacity.

Publication: Design and operation of power systems with large amounts of wind power. State-of-the-art report:
http://www.vtt.fi/inf/pdf/workingpapers/2007/W82.pdf
http://www.vtt.fi/vtt_show_record.jsp?target=julk&form=sdefe&search=58120

Hannele Holttinen | alfa
Further information:
http://www.vtt.fi
http://www.vtt.fi/inf/pdf/workingpapers/2007/W82.pdf
http://www.vtt.fi/vtt_show_record.jsp?target=julk&form=sdefe&search=58120

More articles from Power and Electrical Engineering:

nachricht Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth
20.05.2019 | DOE/Princeton Plasma Physics Laboratory

nachricht New flying/driving robot developed at Ben-Gurion University of the Negev
20.05.2019 | American Associates, Ben-Gurion University of the Negev

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>