Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon nanotube oscillator might weigh a single atom

16.09.2004


Using a carbon nanotube, Cornell University researchers have produced a tiny electromechanical oscillator that might be capable of weighing a single atom. The device, perhaps the smallest of its kind ever produced, can be tuned across a wide range of radio frequencies, and one day might replace bulky power-hungry elements in electronic circuits.



Recent research in nanoelectromechanical systems (NEMS) has focused on vibrating silicon rods so small that they oscillate at radio frequencies. By replacing the silicon rod with a carbon nanotube, the Cornell researchers have created an oscillator that is even smaller and very durable. Besides serving as a radio frequency circuit element, the new device has applications in mass sensing and basic research.

Paul McEuen, Cornell professor of physics, Vera Sazonova, Cornell graduate student in physics and Yuval Yaish, a visiting scientist in the Laboratory of Atomic and Solid State Physics (LASSP) at Cornell, report on the device in the latest issue (Sept. 16, 2004) of the journal Nature.


Carbon nanotubes are cylinders of carbon atoms arranged in a hexagonal pattern similar to that in the geodesic domes created by architect, inventor and mathematician Buckminster Fuller. Materials with this structure are called fullerenes in his honor, and fullerene spheres are known as buckyballs. A nanotube can be thought of as an elongated buckyball.

The Cornell device consists of a carbon nanotube from one to four nanometers in diameter and about one-and-a-half micrometers long, suspended between two electrodes above a conducting silicon plate. (A nanometer is one-billionth of a meter, the length of three silicon atoms in a row; a micrometer is one-millionth of a meter.) The tube is not stretched tight, but hangs like a chain between two posts in a shallow curve called a catenary.

The tube itself is a conductor, and when a voltage is applied between the tube and the underlying plate, electrostatic force attracts the tube to the plate. An alternating voltage sets up vibration as the tube is alternately attracted and repelled. A static voltage applied at the same time increases the tension on the tube, changing its frequency of vibration just as tightening or loosening a guitar string changes its pitch. The entire assembly of tube and plate behaves as a transistor, so the tube’s motion can be read out by measuring the current flow. Experimenting with various sizes and lengths of tubes, the researchers have made oscillators that tune over a range from 3 to 200 megaHertz (millions of cycles per second).

Such a tunable oscillator could be used as a detector in a radio-frequency device such as a cellular phone, which must constantly change its operating frequency to avoid conflicts with other phones. Like their larger cousins, nanotube oscillators also could be used for mass sensing. Since the frequency of vibration is a function of the mass of the vibrating string, adding a very small mass can change the frequency. Silicon rod oscillators have been used to weigh bacteria and viruses. "This is so much smaller that mass sensitivity should be that much higher," McEuen said. "We’re pushing the ultimate limit, maybe weighing individual atoms."

The researchers conducted their measurements in a vacuum. If air or any other gas were present, the gas molecules would adsorb, or collect in a condensed form, on the surface of the tube, changing its mass. So, McEuen says, nanotube oscillators could be used as gas detectors. One drawback, he points out, is that at present there is no way to mass-produce carbon nanotubes.

McEuen looks forward to studying the fundamental physics of the device. When cooled to cryogenic temperatures, he says, the nanotube acts like "a skinny quantum dot," or a sort of box full of electrons. "We can study the influence of individual electrons hopping on and off," he says. "What happens when you have a quantum dot that can wiggle?"

The Nature paper is titled "A Tunable Carbon Nanotube Electromechnical Oscillator." Other co-authors are Hande &†uml;stünel, a graduate student in physics, David Roundy, a LASSP postdoctoral associate and Tomás A. Arias, Cornell associate professor of physics. The work was funded by the National Science Foundation (NSF) and the Microelectronics Advanced Research Program (MARCO) Focus Center on Materials, Structures and Devices supported by the Semiconductor Research Corporation. The devices were fabricated at the NSF-funded Cornell Nanoscale Facility.

Related World Wide Web sites: The following sites provide additional information on this news release. Some might not be part of the Cornell University community, and Cornell has no control over their content or availability.
oMcEuen group: http://www.lassp.cornell.edu/lassp_data/mceuen/homepage/pubs.html

Bill Steele | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>