Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pumping energy to nanocrystals from a quantum well

14.06.2004


University of California scientists working at Los Alamos National Laboratory with a colleague from Sandia National Laboratories have developed a new method for exciting light emission from nanocrystal quantum dots. The discovery provides a way to supply energy to quantum dots without wires, and paves the way for a potentially wider use of tunable nanocrystalline materials in a variety of novel light-emitting technologies ranging from electronic displays to solid-state lighting and electrically pumped nanoscale lasers.



In a paper published in the today’s issue of the scientific journal Nature, Los Alamos Chemistry Division scientist Victor Klimov and his colleagues describe their method for using non-contact, non-radiative energy transfer from a quantum well to produce light from an adjacent layer of nanocrystals. A quantum well is a semiconductor structure in which an electron is sandwiched between two barriers so that its motion is confined to two dimensions. In a real-life device, the quantum well would be pumped electrically in the same way a common quantum-well light-emitting diode is pumped.

According to Klimov, "The transfer of energy is fast enough to compete with exciton recombination in the quantum well, and that allows us to "move" more than 50 percent of the excitons to adjacent quantum dots. The recombination of these transferred excitons leads to emission of light with color that can be controlled by quantum dot size. The high efficiency of energy transfer in combination with the exceptional luminescent properties of nanocrystal quantum dots make hybrid quantum-well/nanocrystal devices feasible as efficient sources of any color light -- or even white light."


In addition to Klimov, project scientists include Marc Achermann, Melissa Petruska, Simon Kos and Darryl Smith from Los Alamos, along with Daniel Koleske from Sandia National Laboratories.

Quantum dot research at Los Alamos has led to a number of innovations over the past several years, including news ways to observe and manipulate nanodots and methods for making semiconductor nanocrystals respond to photons by producing multiple electrons as a result of impact ionization (http://www.lanl.gov/orgs/pa/newsbulletin/2004/05/03/text02.shtml). That innovation has potential applications in a new generation of solar cells that would produce as much as 35 percent more electrical output than current solar cells.

The nanocrystal quantum dot research is funded by DOE’s Office of Basics Energy Sciences and by the Los Alamos Laboratory-Directed Research and Development (LDRD) program. LDRD funds basic and applied research and development focusing on employee-initiated creative proposals selected at the discretion of the Laboratory director.

Additional information on Los Alamos quantum dot research is available at http://quantumdot.lanl.gov/ online.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Note to news media/editors: an image is available at http://www.lanl.gov/worldview/news/photos/achermann7RED.jpg online.

Photo credit: Los Alamos National Laboratory

Todd Hanson | LANL
Further information:
http://www.lanl.gov/worldview/news/releases/archive/04-053.shtml

More articles from Power and Electrical Engineering:

nachricht EU-project SONAR: Better batteries for electricity from renewable energy sources
17.01.2020 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht Scientists pioneer new generation of semiconductor neutron detector
16.01.2020 | DOE/Argonne National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Molecules move faster on a rough terrain

20.01.2020 | Physics and Astronomy

Spider-Man-style robotic graspers defy gravity

20.01.2020 | Physics and Astronomy

Laser diode emits deep UV light

20.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>