Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pumping energy to nanocrystals from a quantum well

14.06.2004


University of California scientists working at Los Alamos National Laboratory with a colleague from Sandia National Laboratories have developed a new method for exciting light emission from nanocrystal quantum dots. The discovery provides a way to supply energy to quantum dots without wires, and paves the way for a potentially wider use of tunable nanocrystalline materials in a variety of novel light-emitting technologies ranging from electronic displays to solid-state lighting and electrically pumped nanoscale lasers.



In a paper published in the today’s issue of the scientific journal Nature, Los Alamos Chemistry Division scientist Victor Klimov and his colleagues describe their method for using non-contact, non-radiative energy transfer from a quantum well to produce light from an adjacent layer of nanocrystals. A quantum well is a semiconductor structure in which an electron is sandwiched between two barriers so that its motion is confined to two dimensions. In a real-life device, the quantum well would be pumped electrically in the same way a common quantum-well light-emitting diode is pumped.

According to Klimov, "The transfer of energy is fast enough to compete with exciton recombination in the quantum well, and that allows us to "move" more than 50 percent of the excitons to adjacent quantum dots. The recombination of these transferred excitons leads to emission of light with color that can be controlled by quantum dot size. The high efficiency of energy transfer in combination with the exceptional luminescent properties of nanocrystal quantum dots make hybrid quantum-well/nanocrystal devices feasible as efficient sources of any color light -- or even white light."


In addition to Klimov, project scientists include Marc Achermann, Melissa Petruska, Simon Kos and Darryl Smith from Los Alamos, along with Daniel Koleske from Sandia National Laboratories.

Quantum dot research at Los Alamos has led to a number of innovations over the past several years, including news ways to observe and manipulate nanodots and methods for making semiconductor nanocrystals respond to photons by producing multiple electrons as a result of impact ionization (http://www.lanl.gov/orgs/pa/newsbulletin/2004/05/03/text02.shtml). That innovation has potential applications in a new generation of solar cells that would produce as much as 35 percent more electrical output than current solar cells.

The nanocrystal quantum dot research is funded by DOE’s Office of Basics Energy Sciences and by the Los Alamos Laboratory-Directed Research and Development (LDRD) program. LDRD funds basic and applied research and development focusing on employee-initiated creative proposals selected at the discretion of the Laboratory director.

Additional information on Los Alamos quantum dot research is available at http://quantumdot.lanl.gov/ online.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Note to news media/editors: an image is available at http://www.lanl.gov/worldview/news/photos/achermann7RED.jpg online.

Photo credit: Los Alamos National Laboratory

Todd Hanson | LANL
Further information:
http://www.lanl.gov/worldview/news/releases/archive/04-053.shtml

More articles from Power and Electrical Engineering:

nachricht The new technology will significantly enhance energy harvest from PV modules
12.06.2019 | Estonian Research Council

nachricht NextGenBat: Basic research for mobile energy storage systems
12.06.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>