Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another Twist in the Field of Superconductivity

24.03.2004


Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have discovered an interesting type of electronic behavior in a recently discovered class of superconductors known as cobalt oxides, or cobaltates. These materials operate quite differently from other oxide superconductors, namely the copper oxides (or cuprates), which are commonly referred to as high-temperature superconductors.



When traditional superconductors are cooled to nearly absolute zero (0 Kelvin or –452 degrees Fahrenheit), pairs of negatively charged electrons exchange packets of vibrational energy known as phonons. This mechanism overcomes the repulsion of the like-charged particles and allows them to move together to carry electrical current with virtually no resistance. But the mechanism for superconductivity in the high-temperature cuprates — which act as superconductors at temperatures as “warm” as 138 K — is still one of the “hottest” mysteries in condensed matter physics. Above the superconducting transition temperature the cuprates do not exhibit normal electronlike behavior, so it’s unclear either how or what is pairing to carry the current.

With the discovery of a new class of oxide superconductors, the cobaltates (which become superconducting at a temperature around 5 K), scientists were naturally curious whether they could learn something about their mechanism to shed light upon this problem. “What we’ve found,” says Brookhaven physicist Peter Johnson, “has opened up another twist.”


As Johnson’s group cooled the cobalt-oxide materials, they observed electron-like excitations at temperatures well above the so-called transition temperature where the materials become superconductors. “If we had discovered these before we discovered the cuprates we’d probably think the same electron pairing mechanism was responsible for all superconductivity,” Johnson says.

Johnson will explore the implications of this work in his talk during the session on “Novel and Complex Oxides IV” on Tuesday, March 23, at 2:42 p.m. in room 511E. This research is funded by the Office of Basic Energy Sciences within the Department of Energy’s Office of Science.

Karen McNulty Walsh | BNL
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/2004/bnlpr032304a.htm

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>