Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Portable CT Scanner Joins Hunt for Alternative Energy

13.06.2003


Lawrence Berkeley National Laboratory (Berkeley Lab) scientists have developed the world’s first x-ray computed tomography (CT) scanner capable of examining entire core samples at remote drilling sites. The portable device, which employs the same high-resolution imaging technology used to diagnose diseases, could help researchers determine how to best extract the vast quantities of natural gas hidden under the world’s oceans and permafrost.


Berkeley Lab’s portable scanner has sailed the high seas and endured arctic cold, imaging more than 2000 feet of core sample along the way


A CT scan of a permafrost core reveals a mixture of sandstone and quartz fluvial grains cemented in an ice-sand matrix



The scanner images the distribution of gas hydrates in core samples pulled from deeply buried sediment. These hydrates are a latticework of water and methane that form an ice-like solid under high pressures and temperatures that hover just above freezing, conditions found in deep oceans and under Arctic permafrost. Scientists estimate the methane trapped in this crystalline mix may yield far more energy than the planet’s remaining reserves of fossil fuel.

But they must first determine how to find and remove it. As part of this investigational legwork, researchers drill into likely gas hydrate reserves and extract core samples. Select samples are then shipped to laboratories for analysis, and the resulting data is used to develop computer models that predict how gas hydrates behave in sediments, which may help researchers determine how to most efficiently locate and extract methane.


It’s a laborious process, however. Because gas hydrates rapidly decompose when brought to the surface, the samples must be preserved under high pressure and low temperatures, then shipped to labs hundreds of miles away. This means the data required for these powerful numerical models is harvested slowly, one carefully packaged-and-shipped core at a time.

Barry Freifeld, a mechanical engineer in Berkeley Lab’s Earth Sciences Division, wondered if real-time, on-site analysis could expedite this work. His optimism stemmed from earlier research in which he demonstrated that a medical CT scanner can image a wave of methane hydrate dissociating in a sand mixture.

“Nobody had ever done that before, and I asked why can’t we also do it in the field,” Freifeld says.

Unfortunately, most CT scanners weigh more than 1000 kilograms, are bolted to the floor, and are housed in lead-lined rooms. Portable they’re not. On the other hand, their ability to splice hundreds of x-ray scans into one cross-sectional image could enable researchers to map the distribution of gas hydrates in core samples in unprecedented detail. If only such power could be reduced in size and brought to the drill site.

Freifeld believed he knew how, and he got his break last spring after learning the drill ship JOIDES Resolution was scheduled to probe for gas hydrates off the Oregon coast. The vessel is operated by the Ocean Drilling Program, an international partnership of scientists and research institutions sponsored by the National Science Foundation and participating countries. The group had previously used conventional x-ray imaging aboard the ship to analyze core samples, but the images proved of marginal quality. When Freifield suggested x-ray CT, essentially offering laboratory-quality analysis on the high seas, the Ocean Drilling Program jumped at the chance.

His team received funding from the Department of Energy’s National Energy Technology Laboratory, and in five weeks built a refrigerator-sized, 300-kilogram scanner. They trucked it to Oregon’s Coos Bay, loaded it on a supply ship, sailed west overnight, and at daybreak hoisted it aboard the JOIDES Resolution as it drilled along the Cascadia Ridge in search of hydrates. Several hours later, the scanner analyzed its first core sample, and churned through 1500 feet of core over the next several weeks.

“We can run core through the scanner almost as quickly as they can pull it out,” says Freifeld “Now, researchers don’t have to send kilometers of core to a lab to get the same information they can obtain in the field. They’ll send data instead of rocks.”

Their success hinges on several innovations. Instead of a lead-lined room to protect operators from radiation, they developed a three-piece shield composed of a layer of lead sandwiched between two thin stainless steel layers. This arrangement reduces the amount of lead usually required to encapsulate x-ray imaging systems. And because x-rays passing through the center of the core are more attenuated than those passing through the edges, they designed a half-cylinder-shaped, aluminum compensator that flattens the image intensity and ensures high-resolution imaging throughout the core sample. In addition, special software reconstructs a 3-D image of a scanned core, giving an operator the freedom to observe the core’s interior from any angle and direction. And 3-D scans can be taken at a rate of three minutes per foot of core length, yielding resolutions between 50 and 200 microns.

“We’ve taken a million dollar medical instrument and transformed it into a rugged, $150,000 piece of equipment,” Freifeld says.

This winter, the hearty scanner traveled above the Arctic Circle to the permafrost stretches near Prudhoe Bay, Alaska. There, researchers are conducting the first test on U.S. soil concerning how to extract methane from gas hydrates. The scanner analyzed more than 500 feet of core sample, enabling researchers to generate the most detailed log of permafrost cores ever recorded. And the system worked in subzero temperatures.

“It ran fine, but the cold was hard on the technicians. We needed a lot of tea and coffee,” Freifeld says.

Luckily for Freifeld, the scanner is next headed to warmer climates. It’s scheduled for another hitch aboard the JOIDES Resolution as it sails from Bermuda to Newfoundland. The ship will drill along the continental margin and study rifting, the tectonic process by which the lithosphere thins and the seafloors spread. The scanner will allow scientists to generate the most detailed lithostratigraphic record ever constructed from oceanic cores.

“With this instrument, we can systematically investigate everything recovered and generate a detailed electronic record,” Freifeld says. “Its ability to conduct high-resolution imaging anywhere will have a large impact on energy exploration, mining and fundamental research.”

In addition to Freifeld, Tim Kneafsey, Jacob Pruess, Paul Reiter, and Liviu Tomutsa of Berkeley Lab’s Earth Sciences Division contributed to the development of the scanner.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Dan Krotz | EurekAlert!
Further information:
http://www.lbl.gov/Science-Articles/Archive/ESD-CT-scanner.html

More articles from Power and Electrical Engineering:

nachricht Neuron and synapse-mimetic spintronics devices developed
17.04.2019 | Tohoku University

nachricht New discovery makes fast-charging, better performing lithium-ion batteries possible
16.04.2019 | Rensselaer Polytechnic Institute

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>