Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An ’AAAAAAAAA’ battery? UF researchers make progress on tiny cell

10.10.2002


It would send and receive faxes and video and have the processing power of a personal computer. The cell phone of the future would be on the market today but for one hitch: the battery.



The technology is available to build cell phones that would make the latest versions -- those that allow users to send pictures and play video games -- seem almost primitive. But the batteries now used in cell phones are not nearly powerful enough to drive all the fancy add-ons, said Charles Martin, a University of Florida chemistry professor. Laptop computers, video cameras and digital cameras also are hobbled by today’s power storage technology. Meanwhile, tiny machines being developed for a variety of purposes -- such as "lab-on-a-chip" devices that sense airborne chemical or biological pathogens -- will require batteries many times smaller and more powerful than today’s smallest batteries.

So Martin and his team are making progress on a new approach: Batteries inspired by the emerging field of nanotechnology. The research could both improve the small batteries used in portable electronics and lead to truly miniscule power packs for so called "microelectromechanical" machines, or MEMS, devices. In the first year of a five-year collaborative effort with three other institutions funded by a $5 million grant from the U.S. Office of Naval Research, the research is showing progress toward its goal of creating a three-dimensional, millimeter-sized battery – considerably smaller than the centimeter-sized hearing aid batteries that are the smallest batteries on the market today.


All batteries consist of two electrodes, an anode and a cathode, and an electrolyte solution. UF researchers have created both nano-anodes and nano-cathodes, or anodes and cathodes measured on the scale of billionths of a meter. They’ve shown in tests that these electrodes are as much as 100 times more powerful than traditional ones.

The electrodes also have a unique and promising structure.

"The UF progress is very significant," said Bruce Dunn, a professor of materials science and engineering at the University of California-Los Angeles, the lead institution in the project. "(Martin’s) work, the fabrication and testing of nano-dimensional cathodes and anodes, represents the key elements of his concentric tube battery approach, which represents a novel three-dimensional configuration."

Martin and his colleagues create the nano-electrodes using a technique he pioneered called template synthesis. This involves filling millions of tiny "nanoscopic" holes in a centimeter-sized plastic or ceramic template with a solution that contains the chemical components that make up the electrode. After the solution hardens, the researchers remove the template, leaving only the electrodes. The next challenge is to find a way to put together the nano-anode and nano-cathode with a nano-electrolyte and other components.

"We’ve proposed a totally new design for a battery where all the components are nanomaterials, and we have succeeded in making nearly all of these components," Martin said. "We have not yet developed the technologies to assemble these components, and that’s what we’re working on."

Robbie Sides, a UF doctoral student in chemistry and one of the researchers in Martin’s lab, said UF’s nano-anodes and nano-cathodes are not only more powerful than traditional ones, they’re also hardier. Lithium-ion battery electrodes might sustain an average of 500 charges and discharges before wearing out, he said. In tests done by another UF chemistry doctoral student on Martin’s team, the nano-electrodes sustained as many as 1,400 charges.

The new technology could improve cell phones and other portable electronics, which use lithium-ion batteries. These batteries are made of composites of small particles. Their ability to produce power depends on lithium ions diffusing throughout these particles. While microscopic, the particles are large enough to be measured in microns, or millionths of a meter. The nano-battery approach seeks to replace these particles with particles measured in billionths of a meter, which would enhance power storage and production because the lithium ions would have less distance to travel as they diffuse.

Micro-batteries also could power tiny pumps or presses in MEMS devices. Researchers already have developed or are working on a plethora of uses for such machines, including tiny switches or environmental sensors. As Sides pointed out, however, it doesn’t make much sense to make the device tiny unless there is a power source to match.

"If you have a circuit the size of a pinhead and you need a battery the size of a triple A that you get from the store, then it (the circuit) won’t be useful," he said.


The U.S. Department of Energy has funded much of the UF basic science research on nanobatteries. Aside from UF and UCLA, the other participants in the Office of Naval Research project are the University of Utah and the Naval Research Laboratory. Each institution is working on a different approach to creating batteries made of nanoscale materials, efforts Martin predicts could result in a prototype device within three years

Aaron Hoover | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Power and Electrical Engineering:

nachricht The new technology will significantly enhance energy harvest from PV modules
12.06.2019 | Estonian Research Council

nachricht NextGenBat: Basic research for mobile energy storage systems
12.06.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>