Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how nanocluster contaminants increase risk of spreading

22.04.2008
For almost half a century, scientists have struggled with plutonium contamination spreading further in groundwater than expected, increasing the risk of sickness in humans and animals.

It was known nanometer sized clusters of plutonium oxide were the culprit, but no one had been able to study its structure or find a way to separate it from the groundwater.

Scientists at the U.S. Department of Energy’s Argonne National Laboratory, in collaboration with researchers from the University of Notre Dame, were able to use high-energy X-rays from the Argonne Advanced Photon Source to finally discover and study the structure of plutonium nanoclusters.

“When plutonium forms into the clusters, its chemistry is completely different and no one has really been able to assess what it is, how to model it or how to separate it Argonne senior chemist Lynda Soderholm said. “People have known about and tried to understand the nanoclusters, but it was the modern analytical techniques and the APS that allowed us understand what it is.”

The nanoclusters are made up of exactly 38 plutonium atoms and had almost no charge. Unlike stray plutonium ions, which carry a positive charge, they are not attracted to the electrons in plant life, minerals, etc. which stopped the ions’ progression in the ground water.

Models have been based on the free-plutonium model, creating discrepancies between what is expected and reality. Soderholm said that with knowledge of the structure, scientists can now create better models to account for not only free-roaming plutonium ions, but also the nanoclusters.

The clusters also are a problem for plutonium remediation. The free ions are relatively easy to separate out from groundwater, but the clusters are difficult to remove.

“As we learn more, we will be able to model the nanoclusters and figure out how to break them apart,” Soderholm said. “Once they are formed, they are very hard to get rid of.”

Soderholm said other experiments have shown some clusters with different numbers of plutonium atoms and she plans to examine -- together with her collaborators S. Skanthakumar, Richard Wilson and Peter Burns of Argonne’s Chemical Sciences and Engineering Division-- the unique electric and magnetic properties of the clusters.

Brock Cooper | EurekAlert!
Further information:
http://www.anl.gov

More articles from Power and Electrical Engineering:

nachricht Neuron and synapse-mimetic spintronics devices developed
17.04.2019 | Tohoku University

nachricht New discovery makes fast-charging, better performing lithium-ion batteries possible
16.04.2019 | Rensselaer Polytechnic Institute

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>