Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Porous silicon layers for more efficient lithium-ion batteries

05.09.2019

Within the scope of the project PoSiBat (funding reference 100275833), Fraunhofer FEP scientists were able to develop a non-toxic and efficient manufacturing process for porous silicon layers. The results of the recently completed project will be presented at the Thin Film Technology for Energy Systems workshop at V 2019 and at the Fraunhofer FEP booth No. 22 (October 8 –10, 2019, in Dresden, Germany).

Lithium-ion batteries are well established due to their good properties. They have a higher energy density than other batteries. Therefore, they are used in cameras, watches, mobile devices and especially for electric vehicles. However, from a technical point of view they still offer a high potential for improving and optimizing of battery cells.


Scheme of the formation of separated grains of zinc (red) and silicon (blue) after deposition (left) and porous silicon film after expelling zinc by thermal annealing (right).

© Fraunhofer FEP; Picture in printable resolution: www.fep.fraunhofer.de/press

Lithium-ion batteries consist of an arrangement of different layers, each with different functions. The cathode and anode are the two electrodes of the battery, which are connected electrically via conductive electrolyte inside the cell.

Currently, there are many research activities worldwide for developing new materials and alternative manufacturing processes in order to improve the battery performance, especially for mobile devices and electromobility.

Important aspects for prospective technologies are resource conservation, environmental protection and safety. In addition, batteries should be produced sustainably and cost-effectively with large throughputs.

Within the project PoSiBat a cost-efficient and environmentally friendly process was developed for fabricating porous silicon layers as anode material. The replacement of currently used graphite materials by silicon promises an almost tenfold increase in the specific charging capacity of the anode.

However, the charging and discharging process leads to an enormous change in volume of the silicon and therefore to a rapid mechanical and electrochemical destruction of the material compound and thus to cell failure.

Dr. Stefan Saager from Fraunhofer FEP explains the innovation: "We developed a process in which silicon and zinc are simultaneously deposited on metal substrates. By applying a subsequent heat treatment, the zinc re-evaporates from the layer, and pores are generated at the locations of former zinc grains. The porous structure in the silicon provides adequate space for its expansion during the charging process and thus capacity fade is minimized. The porous structure can be manipulated and optimized to the specific battery requirements by adapting process parameters. The zinc can be collected and reused in the conceived process."

The porous silicon layers show an encouraging battery performance, which is demonstrated by an initial charging capacity of more than 3,000 mAh/gSi and a comparably good cycle stability.

The expertise of the Fraunhofer FEP lies in the coating of metal substrates and foils with zinc and silicon, which is possible with very high coating rates in conventional non-toxic vacuum processes. These processes enable high throughput and low manufacturing costs. At the Fraunhofer Institute for Material and Beam Technology IWS, the electrochemical properties of the porous coatings were characterized.

The scientists at the Fraunhofer FEP are now looking forward to collaborating with battery manufacturers to transfere the results into high-performance products. They are open for cooperations.

*About the project PoSiBat:
In the PoSiBat research project (project duration: September 1, 2016 to May 31, 2019), fundamental investigations were carried out into the production of highly porous silicon layers and their potential for the production of Lithium-ion batteries with very high energy density. The focus was on replacing conventional materials in the production of negative battery electrodes with silicon, a material with a particularly high capacity for storing lithium ions based on mass or volume. The material development is aimed in particular at applications in vehicles where high energy densities and high currents are required of the battery. The project also developed a concept to scale up the new technologies to a production process. The project has received funding by the European Union and the Free State of Saxony, funding reference: 100275833.

*Fraunhofer FEP during V2019:
Industrial Exhibition:
8. October 2019, 13:00 – 22:00; 9. October 2019, 09:00 – 17:30; 10. October 2019,
09:00 – 13:00
Booth No. 22

Poster:
Untersuchung von Technologien zur Abscheidung von verschleißmindernden
aluminiumreichen TiAlN-Schichten
M. Höhn*, M. Krug*, F. Fietzke**, B. Scheffel**,U. Ratayski***, D. Rafaja***, I. Garrn****,
G. Giersch****
* Fraunhofer IKTS Dresden
** Fraunhofer FEP Dresden
*** TU Bergakademie Freiberg
**** Dr. Gühring KG Chemnitz

Talks:
9. October 2019, 12:00 – 12:30, WS1 – V12
Herstellung von porösen Silizium-Schichten für Anwendungen in der Batterietechnik
Stefan Saager, Fraunhofer FEP
10. October 2019, 09:00 – 09:30, WS3 – V07
Anspruchsvolle laseroptische Beschichtungen durch Inline-Magnetronsputtern
Dr. Peter Frach, Fraunhofer FEP

Workshop:
WS 1: Energie - Dünnschicht-Technologie für Energiesysteme
08. 10. 2019, 11:30 – 18:00
09. 10. 2019, 11:30 – 12:30
Program chairs:
Dr. Torsten Kopte, Fraunhofer FEP, Dresden
Dr. Volker Sittinger, Fraunhofer IST, Braunschweig
Dr. Martin Dimer, VON ARDENNE GmbH
Dr. Grit Hüttl, GfE Fremat GmbH, Freiberg

Tour:
10. October 2019, 13:00 – 16:00
At the end of V2019 the Dresden research locations open their doors. On the Fraunhofer Campus on Dresden's Winterbergstrasse, laboratories and facilities of the Fraunhofer IWS, Fraunhofer IKTS and Fraunhofer FEP will be visited, information about current research projects will be provided and possibilities for joint research projects will be discussed.


Press contact:

Ms. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Power and Electrical Engineering:

nachricht EU-project SONAR: Better batteries for electricity from renewable energy sources
17.01.2020 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht Scientists pioneer new generation of semiconductor neutron detector
16.01.2020 | DOE/Argonne National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Molecules move faster on a rough terrain

20.01.2020 | Physics and Astronomy

Spider-Man-style robotic graspers defy gravity

20.01.2020 | Physics and Astronomy

Laser diode emits deep UV light

20.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>