Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Porous silicon layers for more efficient lithium-ion batteries

05.09.2019

Within the scope of the project PoSiBat (funding reference 100275833), Fraunhofer FEP scientists were able to develop a non-toxic and efficient manufacturing process for porous silicon layers. The results of the recently completed project will be presented at the Thin Film Technology for Energy Systems workshop at V 2019 and at the Fraunhofer FEP booth No. 22 (October 8 –10, 2019, in Dresden, Germany).

Lithium-ion batteries are well established due to their good properties. They have a higher energy density than other batteries. Therefore, they are used in cameras, watches, mobile devices and especially for electric vehicles. However, from a technical point of view they still offer a high potential for improving and optimizing of battery cells.


Scheme of the formation of separated grains of zinc (red) and silicon (blue) after deposition (left) and porous silicon film after expelling zinc by thermal annealing (right).

© Fraunhofer FEP; Picture in printable resolution: www.fep.fraunhofer.de/press

Lithium-ion batteries consist of an arrangement of different layers, each with different functions. The cathode and anode are the two electrodes of the battery, which are connected electrically via conductive electrolyte inside the cell.

Currently, there are many research activities worldwide for developing new materials and alternative manufacturing processes in order to improve the battery performance, especially for mobile devices and electromobility.

Important aspects for prospective technologies are resource conservation, environmental protection and safety. In addition, batteries should be produced sustainably and cost-effectively with large throughputs.

Within the project PoSiBat a cost-efficient and environmentally friendly process was developed for fabricating porous silicon layers as anode material. The replacement of currently used graphite materials by silicon promises an almost tenfold increase in the specific charging capacity of the anode.

However, the charging and discharging process leads to an enormous change in volume of the silicon and therefore to a rapid mechanical and electrochemical destruction of the material compound and thus to cell failure.

Dr. Stefan Saager from Fraunhofer FEP explains the innovation: "We developed a process in which silicon and zinc are simultaneously deposited on metal substrates. By applying a subsequent heat treatment, the zinc re-evaporates from the layer, and pores are generated at the locations of former zinc grains. The porous structure in the silicon provides adequate space for its expansion during the charging process and thus capacity fade is minimized. The porous structure can be manipulated and optimized to the specific battery requirements by adapting process parameters. The zinc can be collected and reused in the conceived process."

The porous silicon layers show an encouraging battery performance, which is demonstrated by an initial charging capacity of more than 3,000 mAh/gSi and a comparably good cycle stability.

The expertise of the Fraunhofer FEP lies in the coating of metal substrates and foils with zinc and silicon, which is possible with very high coating rates in conventional non-toxic vacuum processes. These processes enable high throughput and low manufacturing costs. At the Fraunhofer Institute for Material and Beam Technology IWS, the electrochemical properties of the porous coatings were characterized.

The scientists at the Fraunhofer FEP are now looking forward to collaborating with battery manufacturers to transfere the results into high-performance products. They are open for cooperations.

*About the project PoSiBat:
In the PoSiBat research project (project duration: September 1, 2016 to May 31, 2019), fundamental investigations were carried out into the production of highly porous silicon layers and their potential for the production of Lithium-ion batteries with very high energy density. The focus was on replacing conventional materials in the production of negative battery electrodes with silicon, a material with a particularly high capacity for storing lithium ions based on mass or volume. The material development is aimed in particular at applications in vehicles where high energy densities and high currents are required of the battery. The project also developed a concept to scale up the new technologies to a production process. The project has received funding by the European Union and the Free State of Saxony, funding reference: 100275833.

*Fraunhofer FEP during V2019:
Industrial Exhibition:
8. October 2019, 13:00 – 22:00; 9. October 2019, 09:00 – 17:30; 10. October 2019,
09:00 – 13:00
Booth No. 22

Poster:
Untersuchung von Technologien zur Abscheidung von verschleißmindernden
aluminiumreichen TiAlN-Schichten
M. Höhn*, M. Krug*, F. Fietzke**, B. Scheffel**,U. Ratayski***, D. Rafaja***, I. Garrn****,
G. Giersch****
* Fraunhofer IKTS Dresden
** Fraunhofer FEP Dresden
*** TU Bergakademie Freiberg
**** Dr. Gühring KG Chemnitz

Talks:
9. October 2019, 12:00 – 12:30, WS1 – V12
Herstellung von porösen Silizium-Schichten für Anwendungen in der Batterietechnik
Stefan Saager, Fraunhofer FEP
10. October 2019, 09:00 – 09:30, WS3 – V07
Anspruchsvolle laseroptische Beschichtungen durch Inline-Magnetronsputtern
Dr. Peter Frach, Fraunhofer FEP

Workshop:
WS 1: Energie - Dünnschicht-Technologie für Energiesysteme
08. 10. 2019, 11:30 – 18:00
09. 10. 2019, 11:30 – 12:30
Program chairs:
Dr. Torsten Kopte, Fraunhofer FEP, Dresden
Dr. Volker Sittinger, Fraunhofer IST, Braunschweig
Dr. Martin Dimer, VON ARDENNE GmbH
Dr. Grit Hüttl, GfE Fremat GmbH, Freiberg

Tour:
10. October 2019, 13:00 – 16:00
At the end of V2019 the Dresden research locations open their doors. On the Fraunhofer Campus on Dresden's Winterbergstrasse, laboratories and facilities of the Fraunhofer IWS, Fraunhofer IKTS and Fraunhofer FEP will be visited, information about current research projects will be provided and possibilities for joint research projects will be discussed.


Press contact:

Ms. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Power and Electrical Engineering:

nachricht Fraunhofer starts development of refrigerant-free, energy-efficient electrocaloric heat pumps
09.12.2019 | Fraunhofer IPM

nachricht A solution for cleaning up PFAS, one of the world's most intractable pollutants
06.12.2019 | Colorado State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>