Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paving the way: An accelerator on a microchip

28.11.2018

Electrical engineers at TU Darmstadt developed design as part of international collaboration

Electrical engineers in the accelerator physics group at TU Darmstadt have developed a design for a laser-driven electron accelerator so small it could be produced on a silicon chip.


This is an accelerator chip on the tip of a finger, and an electron microscope image of the chip.

Credit: Hagen Schmidt / Andrew Ceballos

It would be inexpensive and with multiple applications. The design, which has been published in Physical Review Letters, is now being realised as part of an international collaboration.

Particle accelerators are usually large and costly, but that will soon change if researchers have their way. The Accelerator on a Chip International Program (AChIP), funded by the Gordon and Betty Moore Foundation in the U.S., aims to create an electron accelerator on a silicon chip.

The fundamental idea is to replace accelerator parts made of metal with glass or silicon, and to use a laser instead of a microwave generator as an energy source.

Due to glass's higher electric field load capacity, the acceleration rate can be increased and thus the same amount of energy can be transmitted to the particles within a shorter space, making the accelerator shorter by a factor of approximately 10 than traditional accelerators delivering the same energy.

One of the challenges here is that the vacuum channel for the electrons on a chip has to be made very small, which requires that the electron beam is extremely focused. The magnetic focusing channels used in conventional accelerators are much too weak for this. This means that an entirely new focusing method has to be developed if the accelerator on a chip is to become reality.

As part of TU Darmstadt's Matter and Radiation Science profile area, the AChIP group in accelerator physics (Department of Electrical Engineering and Information Technology at TU Darmstadt), led by the junior scientist Dr. Uwe Niedermayer, recently proposed a decisive solution which calls for using the laser fields themselves to focus the electrons in a channel only 420 nanometres wide.

The concept is based on abrupt changes to the phase of the electrons relative to the laser, resulting in alternating focusing and de-focusing in the two directions in the plane of the chip surface. This creates stability in both directions.

The concept can be compared to a ball on a saddle - the ball will fall down, regardless of the direction in which the saddle tilts. However, turning the saddle continuously means the ball will remain stable on the saddle. The electrons in the channel on the chip do the same.

Perpendicular to the chip's surface, weaker focusing is sufficient, and a single quadrupole magnet encompassing the entire chip can be used. This concept is similar to that of a conventional linear accelerator. However, for an accelerator on a chip, the electron dynamics have been changed to create a two-dimensional design which can be realised using lithographic techniques from the semiconductor industry.

Niedermayer is currently a visiting scientist at Stanford University; the American university is leading the AChIP programme along with University of Erlangen in Germany. At Stanford, he is collaborating with other AChIP scientists with the aim of creating an accelerator on a chip in an experimental chamber the size of a shoebox.

A commercially available system, adapted by means of complicated non-linear optics, is used as a laser source. The aim of the AChIP programme, which has funding until 2020, is to produce electrons with one mega-electron volt of energy from the chip.

This is approximately equal to the electrical voltage of one million batteries. An additional aim is to create ultra-short (<10^-15 seconds) electron pulses, as required by the design for a scalable accelerator on a chip developed in Darmstadt.

The possible applications for an accelerator such as this would be in industry and medicine. An important long-term goal is to create a compact coherent X-ray beam source for the characterisation of materials. One example of a medical application would be an accelerator-endoscope which could be used to irradiate tumours deep within the body with electrons.

A particular advantage of this new accelerator technology is that the chips could be produced inexpensively in large numbers, which would mean that the accelerator would be within reach of the man on the street and every university could afford its own accelerator laboratory.

Additional opportunities would include the use of inexpensive coherent X-ray beam sources in photolithographic processes in the semiconductor industry, which would make a reduction in transistor size in computer processors possible, along with a greater degree of integration density.

###

The publication

Alternating-Phase Focusing for Dielectric-Laser Acceleration https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.214801

About TU Darmstadt

The Technische Universität (TU) Darmstadt is one of Germany's leading technical universities. TU Darmstadt incorporates diverse science cultures to create its characteristic profile. The focus is set on engineering and natural sciences, which cooperate closely with outstanding humanities and social sciences. We are enjoying a worldwide reputation for excellent research in our highly-relevant, focused profile areas: cybersecurity, internet and digitalisation, nuclear physics, fluid dynamics and heat- and mass transfer, energy systems and new materials for product innovation. We dynamically develop our portfolio of research and teaching, innovation and transfer, in order to continue opening up important opportunities for the future of society. Our 312 professors, 4,450 scientific and administrative employees and close to 26,000 students devote their talents and best efforts to this goal. Together with Goethe University Frankfurt and Johannes Gutenberg University Mainz, TU Darmstadt has formed the strategic Rhine-Main Universities alliance.

http://www.tu-darmstadt.de/index.en.jsp

Uwe Niedermayer | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevLett.121.214801

More articles from Power and Electrical Engineering:

nachricht More reliable operation offshore wind farms
23.08.2019 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Scientists develop a metamaterial for applications in magnonics
22.08.2019 | Moscow Institute of Physics and Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>