Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paving the way: An accelerator on a microchip

28.11.2018

Electrical engineers at TU Darmstadt developed design as part of international collaboration

Electrical engineers in the accelerator physics group at TU Darmstadt have developed a design for a laser-driven electron accelerator so small it could be produced on a silicon chip.


This is an accelerator chip on the tip of a finger, and an electron microscope image of the chip.

Credit: Hagen Schmidt / Andrew Ceballos

It would be inexpensive and with multiple applications. The design, which has been published in Physical Review Letters, is now being realised as part of an international collaboration.

Particle accelerators are usually large and costly, but that will soon change if researchers have their way. The Accelerator on a Chip International Program (AChIP), funded by the Gordon and Betty Moore Foundation in the U.S., aims to create an electron accelerator on a silicon chip.

The fundamental idea is to replace accelerator parts made of metal with glass or silicon, and to use a laser instead of a microwave generator as an energy source.

Due to glass's higher electric field load capacity, the acceleration rate can be increased and thus the same amount of energy can be transmitted to the particles within a shorter space, making the accelerator shorter by a factor of approximately 10 than traditional accelerators delivering the same energy.

One of the challenges here is that the vacuum channel for the electrons on a chip has to be made very small, which requires that the electron beam is extremely focused. The magnetic focusing channels used in conventional accelerators are much too weak for this. This means that an entirely new focusing method has to be developed if the accelerator on a chip is to become reality.

As part of TU Darmstadt's Matter and Radiation Science profile area, the AChIP group in accelerator physics (Department of Electrical Engineering and Information Technology at TU Darmstadt), led by the junior scientist Dr. Uwe Niedermayer, recently proposed a decisive solution which calls for using the laser fields themselves to focus the electrons in a channel only 420 nanometres wide.

The concept is based on abrupt changes to the phase of the electrons relative to the laser, resulting in alternating focusing and de-focusing in the two directions in the plane of the chip surface. This creates stability in both directions.

The concept can be compared to a ball on a saddle - the ball will fall down, regardless of the direction in which the saddle tilts. However, turning the saddle continuously means the ball will remain stable on the saddle. The electrons in the channel on the chip do the same.

Perpendicular to the chip's surface, weaker focusing is sufficient, and a single quadrupole magnet encompassing the entire chip can be used. This concept is similar to that of a conventional linear accelerator. However, for an accelerator on a chip, the electron dynamics have been changed to create a two-dimensional design which can be realised using lithographic techniques from the semiconductor industry.

Niedermayer is currently a visiting scientist at Stanford University; the American university is leading the AChIP programme along with University of Erlangen in Germany. At Stanford, he is collaborating with other AChIP scientists with the aim of creating an accelerator on a chip in an experimental chamber the size of a shoebox.

A commercially available system, adapted by means of complicated non-linear optics, is used as a laser source. The aim of the AChIP programme, which has funding until 2020, is to produce electrons with one mega-electron volt of energy from the chip.

This is approximately equal to the electrical voltage of one million batteries. An additional aim is to create ultra-short (<10^-15 seconds) electron pulses, as required by the design for a scalable accelerator on a chip developed in Darmstadt.

The possible applications for an accelerator such as this would be in industry and medicine. An important long-term goal is to create a compact coherent X-ray beam source for the characterisation of materials. One example of a medical application would be an accelerator-endoscope which could be used to irradiate tumours deep within the body with electrons.

A particular advantage of this new accelerator technology is that the chips could be produced inexpensively in large numbers, which would mean that the accelerator would be within reach of the man on the street and every university could afford its own accelerator laboratory.

Additional opportunities would include the use of inexpensive coherent X-ray beam sources in photolithographic processes in the semiconductor industry, which would make a reduction in transistor size in computer processors possible, along with a greater degree of integration density.

###

The publication

Alternating-Phase Focusing for Dielectric-Laser Acceleration https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.214801

About TU Darmstadt

The Technische Universität (TU) Darmstadt is one of Germany's leading technical universities. TU Darmstadt incorporates diverse science cultures to create its characteristic profile. The focus is set on engineering and natural sciences, which cooperate closely with outstanding humanities and social sciences. We are enjoying a worldwide reputation for excellent research in our highly-relevant, focused profile areas: cybersecurity, internet and digitalisation, nuclear physics, fluid dynamics and heat- and mass transfer, energy systems and new materials for product innovation. We dynamically develop our portfolio of research and teaching, innovation and transfer, in order to continue opening up important opportunities for the future of society. Our 312 professors, 4,450 scientific and administrative employees and close to 26,000 students devote their talents and best efforts to this goal. Together with Goethe University Frankfurt and Johannes Gutenberg University Mainz, TU Darmstadt has formed the strategic Rhine-Main Universities alliance.

http://www.tu-darmstadt.de/index.en.jsp

Uwe Niedermayer | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevLett.121.214801

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>