Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the trail of organic solar cells’ efficiency

20.03.2020

Molecular vibrations reduce the maximum achievable photovoltage in organic solar cells

Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials. Currently, the voltage of such cells is still too low - one reason for their still relatively low efficiencies.


Illustration of the generation of charge pairs (excitons), the precursors of free charge carriers in the active layer of an organic solar cell.

M. Panhans


Dr. Frank Ortmann, cfaed Independent Research Group Leader

cfaed / Jürgen Lösel

In their study, by investigating the vibrations of the molecules in the thin films, the scientists were able to show that very fundamental quantum effects, so-called zero point vibrations, can make a significant contribution to voltage losses. The study has now been published in the journal Nature Communications.

Solar cells are a crystallization point of high hopes for the necessary transformation of the global energy production. Organic photovoltaics (OPV), which is based on organic, i.e. carbon-based materials, could be ideally suited to become an important pillar in the energy mix of the "renewables" because they have a better ecological balance sheet compared to conventional silicon-based modules and only a small amount of material is required to produce the thin films.

However, a further increase in efficiency is necessary. It is based on various characteristic values such as the open-circuit voltage, whose too low values are currently a main reason for still quite moderate efficiencies of OPV.

The study investigated physical reasons for this - including the vibrations of the molecules in the thin films. It was shown that the so-called zero point vibrations - an effect of quantum physics that characterizes the motion at absolute temperature zero - can have a significant influence on voltage losses.

A direct relationship between molecular properties and macroscopic device properties was demonstrated. The results provide important information for the further development and improvement of novel organic materials.

The low energy edge of optical absorption spectra is crucial for the performance of solar cells, but in the case of organic solar cells with many influencing factors it is not yet well understood. In the present study, the microscopic origin of absorption bands in molecular blend systems and their role in organic solar cells was investigated.

The focus was on the temperature dependence of the absorption characteristics, which was investigated theoretically under consideration of molecular vibrations. The simulations matched very well with the experimentally measured absorption spectra which leads to a number of important findings.

The authors discovered that the zero-point vibrations, mediated by electron-phonon interaction, cause a considerable absorption bandwidth. This leads to reemission of a part of the energy which is unused and hence reduces the open-circuit voltage. These voltage losses can now be predicted from electronic and vibronic molecular parameters.

What is unusual is that this effect is strong even at room temperature and can significantly reduce the efficiency of the organic solar cell. Which strategies to reduce these vibration-induced voltage losses could be applied is being discussed by the authors for a larger number of systems and different heterojunction geometries.

Institutions involved:
• Technische Universität Dresden: Center for Advancing Electronics Dresden (cfaed), Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Institute for Applied Physics
• Hasselt University, Belgium: Institute for Materials Research (IMO-IMOMEC)

About the Computational Nanoelectronics Group:
The research group at the Center for Advancing Electronics Dresden (cfaed) headed by Dr. Frank Ortmann investigates electronic properties and charge transport properties of novel semiconductor materials. Here, organic semiconductors are currently an important focus of the work, which is funded by the German Research Foundation under the Emmy Noether Program. The group has been based at the cfaed since 2017.
Info: https://cfaed.tu-dresden.de/ortmann-home

Media inquiries:
Matthias Hahndorf
cfaed, Science Communications
Phone: +49 351 463-42847
E-mail: matthias.hahndorf@tu-dresden.de

cfaed
cfaed is a research cluster at TU Dresden (TUD). As an interdisciplinary research center for perspectives of electronics it is located at the TUD as the central scientific unit, but also integrates nine non-university research institutions in Saxony as well as TU Chemnitz as cooperating institutes. With its vision, the cluster aims to shape the future of electronics and initiate revolutionary new applications, such as electronics that do not require boot time, are capable of THz imaging, or support complex biosensor technology. These innovations make conceivable performance improvements and applications that would not be possible with the continuation of today's silicon chip-based technology. In order to achieve its goals, cfaed combines the thirst for knowledge of the natural sciences with the innovative power of engineering.

www.cfaed.tu-dresden.de 

Wissenschaftliche Ansprechpartner:

Dr. Frank Ortmann
Technische Universität Dresden
Center for Advancing Electronics Dresden (cfaed)
Tel.: +49 351 463-43260
E-Mail: frank.ortmann@tu-dresden.de

Originalpublikation:

Molecular vibrations reduce the maximum achievable photovoltage in organic solar cells
DOI: 10.1038/s41467-020-15215-x
Authors: Michel Panhans, Sebastian Hutsch, Johannes Benduhn, Karl Sebastian Schellhammer, Vasileios C. Nikolis, Tim Vangerven, Koen Vandewal, Frank Ortmann

Kim-Astrid Magister | Technische Universität Dresden

Further reports about: Electronics organic solar cells solar cells voltage

More articles from Power and Electrical Engineering:

nachricht Chasing lithium ions on the move in a fast-charging battery
13.03.2020 | DOE/Brookhaven National Laboratory

nachricht 'Spillway' for electrons could keep lithium metal batteries from catching fire
13.03.2020 | University of California - San Diego

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

Im Focus: Shaking off the correlated-electron traffic jam

An international team of researchers from Switzerland, Germany, the USA and Great Britain has uncovered an anomalous metallic behavior in an otherwise insulating ceramic material. The team used ultrashort light pulses with a wide range of colors to watch what happens when the insulating quasi two-dimensional material La2CuO4 (LCO) becomes a three-dimensional metal through laser irradiation. Surprisingly, the researchers found that specific vibrations of the crystal lattice are involved in this metallization process. A careful computational investigation revealed that the same vibrations that show up in this ultrafast movie can destabilize the insulating behavior all by themselves.

The condensed-matter physics world was shaken up when high-temperature superconductivity was reported in a copper oxide material in 1986 by Alex Müller and...

Im Focus: Permanent magnets stronger than those on refrigerator could be a solution for delivering fusion energy

Permanent magnets akin to those used on refrigerators could speed the development of fusion energy - the same energy produced by the sun and stars.

In principle, such magnets can greatly simplify the design and production of twisty fusion facilities called stellarators, according to scientists at the U.S....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

70th Lindau Meeting: 660 young scientists from around 100 countries experience first “Lindau Moment" today

02.03.2020 | Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

 
Latest News

On the trail of organic solar cells’ efficiency

20.03.2020 | Power and Electrical Engineering

Graphene underpins a new platform to selectively ID deadly strains of bacteria

20.03.2020 | Life Sciences

New UCI-led study reveals how skin cells prepare to heal wounds

20.03.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>