Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Material to Push the Boundaries of Silicon-Based Electronics

21.01.2019

The electronics market is growing constantly and so is the demand for increasingly compact and efficient power electronic systems. The predominant electronic components based on silicon will in foreseeable future no longer be able to meet the increasing industrial requirements.This is why scientists from the university of Freiburg, the Sustainability Center Freiburg and the Fraunhofer-Gesellschaft have joined forces in order to explore a new material structure that may be better suited for future power electronics.

The recently launched project »Research of Functional Semiconductor Structures for Energy Efficient Power Electronics« (in short »Power Electronics 2020+«) researches the novel semiconductor material scandium aluminum nitride (ScAlN).


Fraunhofer IAF develops electronic components and systems based on GaN. The image shows a processed GaN wafer.

© Fraunhofer IAF

Prof. Dr. Oliver Ambacher, director of Fraunhofer IAF and professor of power electronics at the Department of Sustainable Systems Engineering (INATECH) of the university of Freiburg, coordinates the supra-regional collaboration.

Three key factors are responsible for the strong growth of the electronics market: the automation and digitalization of the industry as well as the increasing awareness of ecological responsibility and sustainable processes. Power consumption can only be lowered if electronic systems become more more energy- and resource-efficient the same time they become more powerful.

Silicon Technology Reaches its Physical Limit

Up to date, silicon dominates the electronics industry. With its relative low cost and an almost perfect crystal structure, silicon has become a particularly successful semiconductor material, also because its bandgap allows for both a good charge carrier concentration and velocity as well as a good dielectric strength.

However, silicon electronics gradually reaches its physical limit. Especially with regard to the required power density and compactness, silicon power electronic components are insufficient.

Innovative Material Composition for More Power and Efficiency

The limitations of silicon technology have already been overcome by the use of gallium nitride (GaN) as a semiconductor in power electronics. GaN performs better in conditions of high voltages, high temperatures and fast switching frequencies compared to silicon.

This goes hand in hand with significantly higher energy efficiency—with numerous energy-consuming applications, this means a significant reduction in energy consumption. Fraunhofer IAF has been researching GaN as a semiconductor material for electronic components and systems for many years.

With the help of industrial partners, the results of these research work has already been put to commercial use. The scientists of the project »Power Electronics 2020+« will go even further in order to once more enhance the energy efficiency and durability of the next generation of electronic systems. For this purpose, a different and novel material will be used: scandium aluminum nitride (ScAlN).

First Components Based on ScAlN

ScAlN is a piezoelectric semiconductor material with a high dielectric strength which is largely unexplored worldwide with regard of its usability in microelectronic applications. »The fact that scandium aluminum nitride is especially well suited for power electronic components, due to its physical properties, has already been proven«, explains Dr.-Ing. Michael Mikulla, project manager on the part of Fraunhofer IAF.

The aim of the project is to grow lattice-matched ScAlN on a GaN layer and to use the resulting heterostructures to process transistors with high current carrying capacity. »Functional semiconductor structures based on materials with a large bandgap, such as scandium aluminum nitride and gallium nitride, allow for transistors with very high voltages and currents.

These devices reach a higher power density per chip surface as well as higher switching speeds and higher operating temperatures. This is synonymous with lower switching losses, higher energy efficiency and more compact systems«, adds Prof. Dr. Oliver Ambacher, director of Fraunhofer IAF. »By combining both materials, GaN and ScAlN, we want to double the maximal possible output power of our devices while at the same time significantly lowering the energy demand«, says Mikulla.

Pioneering Work in Materials Research

One of the biggest challenges of the project is crystal growth, considering that there exsist structure neither growth recipes nor empirical values for this material, yet. The project team needs to develop these during the next months in order to reach reproducible results and to produce layer structures that can successfully be used for power electronic applications.

Specialist Collaboration and Knowledge Transfer Between Freiburg and Erlangen

The research project will be conducted in close cooperation between the university of Freiburg, the Fraunhofer Institute for Applied Solid State Physics IAF, the Sustainability Center Freiburg as well as the Fraunhofer Institure for Integrated Systems and Device Technology IISB in Erlangen, which is a member of the High-Performance Center for Electronic Systems in Erlangen. This new form of collaboration between university research and application-oriented development shall serve as a role model for future project cooperation.

»On the one hand, this model facilitates the cooperation with companies through the prompt transfer of results from basic research to application-oriented development. On the other hand, it opens up synergies between two technically complementary Fraunhofer Centers from two different regions and thus improves both their offers for potential customers of the semiconductor industry«, reasons Prof. Ambacher.

About Fraunhofer IAF

The Fraunhofer Institute for Applied Solid State Physics IAF ranks among the leading research institutions in the field of compound semiconductors. Based on these semiconductors, IAF develops electronic and optoelectronic components as well as integrated circuits and systems. In a clean room of 1000 m² and additional laboratory space covering 3000 m2, epitaxy and processing equipment along with measurement technologies are available to realize high frequency circuits for communication technology, voltage converter modules for electrical engineering, infrared and UV detectors for safety and security applications, as well as infrared laser systems for medical technology. Important innovations of the institute include high brightness white light-emitting diodes for lighting technology, energy-efficient power amplifiers for mobile communications and highly sensitive laser systems for real-time spectroscopy.


https://www.iaf.fraunhofer.de/en.html

Originalpublikation:

https://www.iaf.fraunhofer.de/en/media-library/press-releases/PowerElectronics20...

Anne-Julie Maurer | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

More articles from Power and Electrical Engineering:

nachricht A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers
22.05.2019 | Tokyo Institute of Technology

nachricht Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth
20.05.2019 | DOE/Princeton Plasma Physics Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>