Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mission accomplished: Solar Impulse completes 72-hour flight simulation

24.02.2012
At 08:06 am this morning André Borschberg completed the three days and three nights of flight simulation that began in Dübendorf on Tuesday 21 February.

During those 72 hours the Solar Impulse team was able to test the human challenge posed by long flights and gain valuable insights for the round-the-world solar energy flight scheduled for 2014.

Installed inside a life-size mock-up of the cockpit of the second plane currently under construction, André Borschberg took up the challenge of piloting the Solar Impulse simulator non-stop for 72 hours. Everything was tested and evaluated by the Solar Impulse team, from tiredness to cockpit ergonomics, nutrition, toilets, exercises to prevent DVT, vigilance, and the aptitude to pilot an aircraft under conditions of sleep deprivation.

Emerging from the simulator, André Borschberg, the co-founder, CEO and pilot of Solar Impulse had this to say: “The simulation demonstrated that our concept of flying single-handed for several days in a row is viable. The techniques of relaxation and multi-phase sleep worked very well, exceeding my expectations by far. Thanks to a careful management of the rest periods I was able to maintain optimum vigilance throughout the flight. We learnt a great deal about the practical management of life on board. Going forward, it’s all very positive and taking us ever closer to the round-the-world flight,” he added with a smile.

The EPFL researchers assigned to monitor the pilot’s physiological data were able to roll out solutions on-site that are normally confined to laboratories. In particular, miniature electronics capable of measuring the pilot’s heart and brain functions in real time. The data will be compared with the results of the vigilance and response-time tests and analysed over the coming weeks by physicians of the Hirslanden Group; the data will play a crucial role in defining the pilot’s rest strategy during the round-the-world flight.

During the simulation André Borschberg tested two rest strategies corresponding to the two types of flight the pilots will undertake during the round-the-world trip. Firstly, relaxation techniques used during short flights (24 to 36 hours) over inhabited zones, where sleep is not an option. Secondly, micro-sleep phases of 15 to 20 mins permitted only when overflying oceans. Over the 72-hour period André Borschberg slept 32 times 20 minutes in a seat specially developed by the Swiss company Lantal.

Bertrand Piccard, initiator, chairman and pilot of Solar Impulse, summed up the simulation of the past three days in two words: “STEADY STATE. For a human body, steady state represents the same notion as sustainability when we talk of sustainable development. It means that the physiological parameters have reached a state of equilibrium that allows them to go on working in the same way over a long period.”

The strategy of customised nutrition developed by Nestlé Health Science proved adequate in terms of both taste and nutritional value. The next phase is to develop packaging that is compatible with fluctuations in temperature ranging between -20 °C and +35 °C.

For Solar Impulse this coming spring will have little in common with a simulation. Flights over the Mediterranean region have already been scheduled with the existing prototype. Another means of training for the round-the-world flight by carrying out flights that are longer in both distance and duration, with the two pilots for the first time relaying each other at each stage.

For more information:
Solar Impulse
Alexandra Gindroz
Press Officer
Tel. +41 58 219 2440
Mobile +41 (0)79 688 45 55 or +41 (0)79 415 82 84
Email: press@solarimpulse.com
About Solar Impulse
Solar Impulse HB-SIA is the first aircraft that can fly day and night without fuel or polluting emissions. It demonstrates the huge potential of new technologies in terms of energy reduction and the production of renewable energy. This revolutionary carbon fibre aircraft, that has the wingspan of an Airbus A340 (63.4m) and the weight of an average family car (1,600kg), is the result of seven intense years of work, calculations, simulations and tests by a team of 70 people and 80 partners. A plane this light and of this size has never been built before. The 12,000 solar cells built into the wing provide four 10HP electric motors with renewable energy. By day the solar cells recharge the 400kg lithium batteries which means the plane can fly at night.The Solar Impulse project is supported by Main Partners: Solvay, Omega, Deutsche Bank and Schindler; Official Partners: Bayer Material Science and Altran; Official Scientific Advisor: EPFL (the Ecole Polytechnique Federale de Lausanne) and Aviation Consultant: Dassault-Aviation.

Alexandra Gindroz | Solar Impulse
Further information:
http://www.solarimpulse.com

Further reports about: 72-hour EPFL Solar Decathlon Solar Impulse renewable energy solar cells

More articles from Power and Electrical Engineering:

nachricht 3D-printed lithium-ion batteries
18.10.2018 | American Chemical Society

nachricht Generating needs-led electricity with biogas plants
17.10.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>