Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mission accomplished: Solar Impulse completes 72-hour flight simulation

24.02.2012
At 08:06 am this morning André Borschberg completed the three days and three nights of flight simulation that began in Dübendorf on Tuesday 21 February.

During those 72 hours the Solar Impulse team was able to test the human challenge posed by long flights and gain valuable insights for the round-the-world solar energy flight scheduled for 2014.

Installed inside a life-size mock-up of the cockpit of the second plane currently under construction, André Borschberg took up the challenge of piloting the Solar Impulse simulator non-stop for 72 hours. Everything was tested and evaluated by the Solar Impulse team, from tiredness to cockpit ergonomics, nutrition, toilets, exercises to prevent DVT, vigilance, and the aptitude to pilot an aircraft under conditions of sleep deprivation.

Emerging from the simulator, André Borschberg, the co-founder, CEO and pilot of Solar Impulse had this to say: “The simulation demonstrated that our concept of flying single-handed for several days in a row is viable. The techniques of relaxation and multi-phase sleep worked very well, exceeding my expectations by far. Thanks to a careful management of the rest periods I was able to maintain optimum vigilance throughout the flight. We learnt a great deal about the practical management of life on board. Going forward, it’s all very positive and taking us ever closer to the round-the-world flight,” he added with a smile.

The EPFL researchers assigned to monitor the pilot’s physiological data were able to roll out solutions on-site that are normally confined to laboratories. In particular, miniature electronics capable of measuring the pilot’s heart and brain functions in real time. The data will be compared with the results of the vigilance and response-time tests and analysed over the coming weeks by physicians of the Hirslanden Group; the data will play a crucial role in defining the pilot’s rest strategy during the round-the-world flight.

During the simulation André Borschberg tested two rest strategies corresponding to the two types of flight the pilots will undertake during the round-the-world trip. Firstly, relaxation techniques used during short flights (24 to 36 hours) over inhabited zones, where sleep is not an option. Secondly, micro-sleep phases of 15 to 20 mins permitted only when overflying oceans. Over the 72-hour period André Borschberg slept 32 times 20 minutes in a seat specially developed by the Swiss company Lantal.

Bertrand Piccard, initiator, chairman and pilot of Solar Impulse, summed up the simulation of the past three days in two words: “STEADY STATE. For a human body, steady state represents the same notion as sustainability when we talk of sustainable development. It means that the physiological parameters have reached a state of equilibrium that allows them to go on working in the same way over a long period.”

The strategy of customised nutrition developed by Nestlé Health Science proved adequate in terms of both taste and nutritional value. The next phase is to develop packaging that is compatible with fluctuations in temperature ranging between -20 °C and +35 °C.

For Solar Impulse this coming spring will have little in common with a simulation. Flights over the Mediterranean region have already been scheduled with the existing prototype. Another means of training for the round-the-world flight by carrying out flights that are longer in both distance and duration, with the two pilots for the first time relaying each other at each stage.

For more information:
Solar Impulse
Alexandra Gindroz
Press Officer
Tel. +41 58 219 2440
Mobile +41 (0)79 688 45 55 or +41 (0)79 415 82 84
Email: press@solarimpulse.com
About Solar Impulse
Solar Impulse HB-SIA is the first aircraft that can fly day and night without fuel or polluting emissions. It demonstrates the huge potential of new technologies in terms of energy reduction and the production of renewable energy. This revolutionary carbon fibre aircraft, that has the wingspan of an Airbus A340 (63.4m) and the weight of an average family car (1,600kg), is the result of seven intense years of work, calculations, simulations and tests by a team of 70 people and 80 partners. A plane this light and of this size has never been built before. The 12,000 solar cells built into the wing provide four 10HP electric motors with renewable energy. By day the solar cells recharge the 400kg lithium batteries which means the plane can fly at night.The Solar Impulse project is supported by Main Partners: Solvay, Omega, Deutsche Bank and Schindler; Official Partners: Bayer Material Science and Altran; Official Scientific Advisor: EPFL (the Ecole Polytechnique Federale de Lausanne) and Aviation Consultant: Dassault-Aviation.

Alexandra Gindroz | Solar Impulse
Further information:
http://www.solarimpulse.com

Further reports about: 72-hour EPFL Solar Decathlon Solar Impulse renewable energy solar cells

More articles from Power and Electrical Engineering:

nachricht New graphene-based metasurface capable of independent amplitude and phase control of light
20.02.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht A step towards controlling spin-dependent petahertz electronics by material defects
19.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

A genetic map for maize

24.02.2020 | Agricultural and Forestry Science

Where is the greatest risk to our mineral resource supplies?

24.02.2020 | Earth Sciences

Computer vision is used for boosting pest control efficacy via sterile insect technique

24.02.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>