Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical Robotics Experts Advance NASA ‘Satellite Surgery’ Project

07.12.2011
Johns Hopkins engineers, recognized as experts in medical robotics, have turned their attention skyward to help NASA with a space dilemma: How can the agency fix valuable satellites that are breaking down or running out of fuel? One option -- sending a human repair crew into space -- is costly, dangerous and sometimes not even possible for satellites in a distant orbit.

Another idea is now getting attention: Send robots to the rescue and give them a little long-distance human help. Johns Hopkins scientists say the same technology that allows doctors to steer a machine through delicate abdominal surgery could someday help an operator on Earth fix a faulty fuel line on the far side of the moon.

A brief preview of this technology was presented Nov. 29, when two graduate students at Johns Hopkins’ Homewood campus in Baltimore used a modified da Vinci medical console to manipulate an industrial robot at NASA’s Goddard Space Flight Center in Greenbelt, Md., about 30 miles away. The demonstration took place during a tour of Goddard by three members of Maryland’s congressional delegation: Sen. Barbara Mikulski and Reps. Donna Edwards and Steny Hoyer.

In this demonstration, the da Vinci console was the same type that doctors use to conduct robotic surgery on cancer and cardiac patients. It included a 3D eyepiece that allowed the operator in Baltimore to see and guide the robot at Goddard. It also provided haptic, or “touch,” feedback to the operator. The goal, Johns Hopkins engineers say, is to adapt some robotic operating room strategies to help NASA to perform long-distance “surgery” on ailing satellites.

“We’re using the expertise we’ve developed in medical robotics technology and applying it to some of the remote-controlled tasks that NASA wants space robots to perform in repairing and refueling satellites,” said Louis Whitcomb, a Johns Hopkins mechanical engineering professor who was at Goddard to help supervise the recent demonstration.

Goddard is the home of NASA’s Satellite Servicing Capabilities Office, set up in 2009 to continue NASA's 30-year legacy of satellite servicing and repair, including missions to the Hubble Space Telescope. Its aims are to develop new ways to service satellites and to promote the development of a U.S. industry for conducting such operations.

To move toward these goals, NASA provided a research grant to West Virginia University, which picked Johns Hopkins as a partner because of the school’s expertise in medical robotics. One task the team has worked on is the use of a remote-controlled robot to carefully cut the plastic tape that holds a satellite’s thermal insulation blanket in place. The tape must be cut and the blanket pulled back in order to expose the satellite’s refueling port. A long-distance test of this procedure, in which an operator at Johns Hopkins will guide a robot through a tape-cutting procedure in West Virginia, is slated to take place soon

The task will be much more challenging when the target satellite is in orbit around the moon, for example. Because of the distance, there will be a significant delay between the time the operator signals the robot to move and the time these instructions are received and carried out. The research team is working on technology to help compensate for this delay.

At Johns Hopkins, the project has provided an exciting hands-on research opportunity for Jonathan Bohren, of Westchester County, N.Y., a doctoral student in mechanical engineering, and Tian Xia, of Richland, Wash., a computer science doctoral student. In the recent demonstration at Goddard, Bohren and Xia controlled the robot from a workstation at Johns Hopkins.

“The long-range goal is to be able to manipulate a space robot like this from any location to refuel satellites, for instance,” Bohren said. “A lot of satellites have the potential to have their lives extended if we can do that.”

Some satellites cost millions or even billions of dollars to construct and launch. If a cost-effective robotic rescue is possible, Xia said, then abandoning spent satellites would be wasteful.

“It would be like driving a fancy car and then ditching it after it runs out of fuel,” he said. “We already have a lot of computer-assisted surgical technology here at Johns Hopkins. We could use some of it to help fix and refuel satellites.”

The principal investigator of the satellite project at Johns Hopkins is Peter Kazanzides, an associate research professor in the Department of Computer Science in the university’s Whiting School of Engineering. Kazanzides also directs the school’s Sensing, Manipulation, and Real-Time Systems (SMARTS) lab.

Color digital image of the robotic demonstration available; contact Phil Sneiderman.

Related Links:
Satellite Servicing Capabilities Office at NASA Goddard Space Flight Center:
http://ssco.gsfc.nasa.gov/about.html
Sensing, Manipulation, and Real-Time Systems (SMARTS) Lab at Johns Hopkins:
http://smarts.lcsr.jhu.edu
Computer Integrated Interventional Systems Laboratory at Johns Hopkins:
http://ciis.lcsr.jhu.edu
Dynamical Systems and Control Laboratory at Johns Hopkins
http://dscl.lcsr.jhu.edu

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Mangroves and their significance for climate protection

26.03.2019 | Earth Sciences

New gene potentially involved in metastasis identified

26.03.2019 | Life Sciences

Riveting,Screwing, Gluing in Aircraft Construction: Smart Human-Robot Teams Master Agile Production

26.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>