Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping electric vehicle batteries cool

03.07.2012
Heat can damage the batteries of electric vehicles – even just driving fast on the freeway in summer temperatures can overheat the battery. An innovative new coolant conducts heat away from the battery three times more effectively than water, keeping the battery temperature within an acceptable range even in extreme driving situations.

Batteries provide the “fuel” that drives electric cars – in effect, the vehicles’ lifeblood. If batteries are to have a long service life, overheating must be avoided. A battery’s “comfort zone” lies between 20°C and 35°C. But even a Sunday drive in the midday heat of summer can push a battery’s temperature well beyond that range.


CryoSolplus is a dispersion that can absorb three times as much heat as water, and can prevent batteries from overheating. (© Fraunhofer UMSICHT)

The damage caused can be serious: operating a battery at a temperature of 45°C instead of 35°C halves its service life. And batteries are expensive – a new one can cost as much as half the price of the entire vehicle. That is why it is so important to keep them cool. Thus far, conventional cooling systems have not reached their full potential: either the batteries are not cooled at all – which is the case with ones that are simply exchanged for a fully charged battery at the “service station” – or they are air cooled.

But air can absorb only very little heat and is also a poor conductor of it. What’s more, air cooling requires big spaces between the battery’s cells to allow sufficient fresh air to circulate between them. Water-cooling systems are still in their infancy. Though their thermal capacity exceeds that of air-cooling systems and they are better at conducting away heat, their downside is the limited supply of water in the system compared with the essentially limitless amount of air that can flow through a battery.

More space under the hood
In future, another option will be available for keeping batteries cool – a coolant by the name of CryoSolplus. It is a dispersion that mixes water and paraffin along with stabilizing tensides and a dash of the anti-freeze agent glycol. The advantage is that CryoSolplus can absorb three times as much heat as water, and functions better as a buffer in extreme situations such as trips on the freeway at the height of summer.

This means that the holding tank for the coolant can be much smaller than those of watercooling systems – saving both weight and space under the hood. In addition, CryoSolplus is good at conducting away heat, moving it very quickly from the battery cells into the coolant. With additional costs of just 50 to 100 euros, the new cooling system is only marginally more expensive than water cooling. The coolant was developed by researchers at the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT in Oberhausen.

As CryoSolplus absorbs heat, the solid paraffin droplets within it melt, storing the heat in the process. When the solution cools, the droplets revert to their solid form. Scientists call such substances phase change materials or PCMs. “The main problem we had to overcome during development was to make the dispersion stable,” explains Dipl.-Ing. Tobias Kappels, a scientist at UMSICHT. The individual solid droplets of paraffin had to be prevented from agglomerating or – as they are lighter than water – collecting on the surface of the dispersion. They need to be evenly distributed throughout the water. Tensides serve to stabilize the dispersion, depositing themselves on the paraffin droplets and forming a type of protective coating.

“To find out which tensides are best suited to this purpose, we examined the dispersion in three different stress situations: How long can it be stored without deteriorating? How well does it withstand mechanical stresses such as being pumped through pipes? And how stable is it when exposed to thermal stresses, for instance when the paraffin particles freeze and then thaw again?” says Kappels. Other properties of the dispersion that the researchers are optimizing include its heat capacity, its ability to transfer heat and its flow capability. The scientists’ next task will be to carry out field tests, trying out the coolant in an experimental vehicle.

Tobias Kappels | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/july/keeping-electric-vehicle-batteries-cool.html

Further reports about: battery CryoSolplus Fraunhofer Institut Keeping UMSICHT cooling system electric car

More articles from Power and Electrical Engineering:

nachricht Record efficiency for printed solar cells
09.07.2020 | Swansea University

nachricht Bespoke catalysts for power-to-X
09.07.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Did nerve cells evolve to talk to microbes?

10.07.2020 | Life Sciences

Cherned up to the maximum

10.07.2020 | Physics and Astronomy

Road access for all would be costly, but not so much for the climate

10.07.2020 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>