Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving hydropower through long-range drought forecasts

06.12.2018

Researchers at the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) have developed a complex hydrological model for forecasting dry spells lasting several weeks with high spatial resolution. These predictions make it possible, for example, to operate hydropower plants more profitably.

Changing climatic conditions pose extra challenges for hydropower plant operators. As part of the National Research Programme “Energy Turnaround” (NRP 70), researchers at WSL, MeteoSwiss and ETH Zurich have now developed a complex hydrological model that enables spatially detailed forecasts of persistent dry spells using real-time data. This allows reliable predictions of water scarcity over a period of up to three weeks.

Massimiliano Zappa of WSL, who heads the project, explains the advantage of such forecasts: “With climate change, dry spells will become more frequent and intensive, and will last longer.”

Detecting these periods reliably is important for many reasons: long-range drought forecasts benefit agriculture and inland waterway transport; authorities could encourage people to conserve water at an early stage, or could save fish from rivers where water is low or too warm.

This information is particularly useful for operators of reservoir power stations. “But up to now, forecasts have generally not been made over such long periods because of the high complexity and enormous amounts of data”, says Zappa.

Drought is easier to predict than precipitation, which can only be reliably forecasted up to five days at most. But dry spells are complex phenomena that depend on numerous climatic processes and regional factors such as intensity of water use, soil storage properties, expected soil moisture, water runoff and underground water reservoirs. Previously, Switzerland had no system capable of monitoring these local variables efficiently.

Making optimal use of available water
Long-range forecasts of inflow and outflow in the catchment areas of hydropower stations can be combined with predictions of price developments on the energy market to optimise operation and profitability. Up to now, hydropower operators had to rely on simple statistics such as multi-year averages of precipitation and runoff. The new procedure, however, allows them to estimate the water availability of each day of the following month.

“Reservoir power stations can generate up to 4 per cent higher earnings by making optimal use of available water on the basis of long-range forecasts. This is very important for the hydropower industry, which has come under pressure”, says Frédéric Jordan, CEO of Hydrique Ingéniers, the industrial partner responsible for the economic calculations.

It is in society’s interest that hydropower plants be able to predict the availability of water and convert the stored water into electricity when market demand is high. Only when hydropower plants can operate profitably even under changing climatic conditions will it be possible to finance modernisation and expansion, as envisaged by the Energy Strategy 2050, from their own resources.

The National Research Programmes “Energy Turnaround” and “Managing Energy Consumption”

The Swiss National Science Foundation’s National Research Programmes “Energy Turnaround” (NRP 70) and “Managing Energy Consumption” (NRP 71) are investigating the scientific and technological as well as socioeconomic aspects of the successful implementation of the Energy Turnaround.

Until the end of 2018, more than 300 researchers in more than 100 research projects will be working on substantially reducing energy consumption, developing new technologies and evaluating social prerequisites for their implementation in the next 10 to 30 years.

NFP 70 and NFP 71 are running concurrently. Owing to their many overlapping areas of interest, the two programmes are closely coordinated.
Further information on the individual research projects and the organisation of the National Research Programmes is available at www.nrp70.ch  and www.nrp71.ch 

Wissenschaftliche Ansprechpartner:

Dr Massimiliano Zappa, WSL
Zürcherstrasse 111
8903 Birmensdorf
Phone.: +41 44 739 24 33
E-mail: massimiliano.zappa@wsl.ch

Weitere Informationen:

http://p3.snf.ch/project-153929
http://www.trockenheit.ch
http://www.snf.ch/en/researchinFocus/newsroom/Pages/news_181206_press_release_lo...

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Saving energy by taking a close look inside transistors
10.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Tandem Solar Cells – Record Efficiency for Silicon-based Multi-junction Solar Cell
08.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>