Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How electric heating could save CO2 emissions

17.12.2018

Using building stock as an intelligent component in the energy transformation

The dependence of renewable energy generation on the time of day and the seasons is one of the biggest challenges for the transition to a sustainable energy model. A new study by a scientist at the Technical University of Munich (TUM) and his team proposes a way to even out the peaks and troughs: Surplus output could be used for heating and cooling purposes.


In their simulation, Prof. Thomas Auer (l.) and Manuel de-Borja-Torrejón (r.) consider expansion scenarios for renewable energies and the data of the building stock. (Image: A. Eckert / TUM)

Using building stock as an intelligent component in the energy transformation

The dependence of renewable energy generation on the time of day and the seasons is one of the biggest challenges for the transition to a sustainable energy model. A new study by a scientist at the Technical University of Munich (TUM) and his team proposes a way to even out the peaks and troughs: Surplus output could be used for heating and cooling purposes.

The German government has set a target of generating 80 percent of the country's electric power with renewable sources by 2050. However, renewable energy generation depends on natural sources and therefore it is difficult to control.

Consequently, experts have been working for years on ways to store surplus power or adjust consumption to generation. Potential intelligent components in future energy systems could be buildings. This would also make a carbon-neutral building stock a more realistic possibility.

That is the conclusion reached by Thomas Auer, Professor for Building Technology and Climate Responsive Design at TUM's Department of Architecture. He worked with Prof. Thomas Hamacher and Prof. Ulrich Wagner from the Department of Electrical and Computer Engineering to develop a simulation tool to link the electric power and building sectors.

Toughest challenge: the building stock

"Everyone keeps looking for ways to save energy in new buildings. The talk is all about zero energy buildings – but new buildings are not our biggest problem," says Prof. Auer.

"The major part of our building stock dates back to the time before 1980 – in other words, it predates the German ordinance on thermal insulation. We can't remedy the overall situation with a few new buildings here and there." Auer shows how existing buildings can be used intelligently to help bring about the energy transformation. And he is not referring to energy retrofits, which are often difficult to implement.

Buildings as load management buffers

Auer proposes linking the operation of buildings more closely to the electric power network to balance out the fluctuating supply from renewable sources. In the winter there is more wind – and therefore more wind energy – than in the summer. This could be used to supply heat by means of heat pumps. At present, most heating in Germany depends on fossil fuels, specifically oil and gas.

The excess power generated by solar cells in the summer months could help to cool buildings – a function that will become more important through the effects of climate change, says Prof. Auer.

"We need to adjust the setpoint temperature of rooms to the peak generation in the power network. That would turn the building stock into a sort of buffer for load management – in other words a means of managing power consumption." This way, huge power loads could be shifted towards the building stock in a very short period of time.

A comprehensive simulation tool

In the simulation, the team of researchers linked a model of Germany's overall energy supply system to a detailed model of the building stock. The energy supply model incorporates various development scenarios for renewable energy sources up to 2050. The building stock model is able to represent up to 75 percent of the current energy demand for heating in Germany and takes into account several building types and energy efficiency classes.

For example, the energy consumption of an office building differs from that of a one-family home. In addition, this model permits the study of scenarios based on the different possible upgrade decisions and energy technologies used in buildings. Auer calculates the electric power consumed within one hour – known as the load profile.

The combined simulation shows that under this approach, a carbon-neutral building sector would be possible by 2050 – although the use of electricity to operate buildings could almost double peak power demand during a cold period with lack of wind and sun. This would require an upgrade of the power infrastructure.

More information:

The research project was funded by the Research Initiative "Zukunft Bau" of the Federal Institute for Building, Urban and Regional Research. The research was also supported by numerous partners in industry. The study expands on the results of a project, published in 2014 by Prof. Auer's predecessor, Gerhard Hausladen (now professor emeritus).

Wissenschaftliche Ansprechpartner:

Prof. Dipl.-Ing. Thomas Auer
Technical University of Munich
Chair of Building Technology and Climate Responsive Design
Phone: +49 89 289-22475
thomas.auer@tum.de

Dipl.-Ing. Manuel De Borja Torrejón, M.Sc.
Technical University of Munich
Chair of Building Technology and Climate Responsive Design
Tel: +49 89 289-23823
manuel.de-borja-torrejon@tum.de

http://www.ar.tum.de/en/klima/start/

Originalpublikation:

Auer, T; Hamacher, T.; Wagner, U.; de-Borja-Torrejón, M.; et al.: Gebäude als intelligenter Baustein im Energiesystem. Im Endbericht der Forschungsinitiative Zukunft Bau, Technische Universität München, 2017, p. 85. DOI: 10.14459/2017md1378336
https://mediatum.ub.tum.de/670312?sortfield0=year&sortfield1=&show_id=13...
(in German only)

Related publication in English:
Sänger, F.; Atabay, D.; de Borja Torrejón, M.; et al.: Demand Side Management potential of buildings. 6th Colloquium of the Munich School of Engineering. In: New Concepts in Energy Science and Engineering. Munich School of Engineering, Garching, 2016, p. 10.
DOI: 10.14459/2015md1305104

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35143/
https://mediatum.ub.tum.de/1469863
https://www.professoren.tum.de/en/auer-thomas/
http://www.ar.tum.de/en/klima/research/

Dr. Ulrich Marsch | Technische Universität München

More articles from Power and Electrical Engineering:

nachricht A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers
22.05.2019 | Tokyo Institute of Technology

nachricht Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth
20.05.2019 | DOE/Princeton Plasma Physics Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>