Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High temperature capacitor could pave the way for electric vehicle

07.08.2013
Scientists at the National Physical Laboratory are helping to create electronics capabilities for electric vehicles, with the development of a high temperature capacitor.

Electric Vehicles (EV) are hoped to represent more than 50% of worldwide light duty vehicle sales by 2050. The absence of suitable capacitors is one of the major barriers to meeting this goal.

Capacitors are a means of storing energy and are vital to the process of converting DC power from the vehicle battery, into AC power required to drive the motor. Current capacitors do not meet the EV requirements, due to an inability to function reliably under the high temperatures created in electric vehicles.

NPL have overcome this issue, as part of a Technology Strategy Board funded project. The outcome is a capacitor, called HITECA, that can operate close to normal efficiency at over 200oC, significantly higher than any other capacitor on the market. It also offers a high energy density - the measure of how much energy it can store.

The upshot for the electrical vehicle driver could mean an increased mileage range, reduced maintenance, and an enhanced driving feel.

To develop the capacitor, NPL investigated a range of lead-free materials that could have the desired properties to develop into a high temperature capacitor.

The scientists explored different compositions and different ways of fabricating them. They measured current at a range of high temperatures using advanced measurement techniques. The most promising materials were optimised to achieve the desired properties. The resulting capacitor is created from a ceramic, based on doped-BiFeO3 compound.

Tatiana Correia, lead scientist on the project, said: "The opportunities for electric vehicles are huge, both financially and environmentally, but they are currently being held back by a few technical issues. With this high temperature capacitor we believe we have solved an important one of those issues and will play a vital part in the move towards mass market electric vehicles."

A recent Frost & Sullivan Report shows that capacitors represent a £10bn global market in the automotive industry alone. This capacitor also has huge potential in other areas of high temperature electronics for other industries, for example: pulsed power applications (defibrillators and x-ray generators), energy conversion in photovoltaics and integrated circuits, downhole power electronics in oil and gas industry, which need to work at high temperatures or are subject to overheating.

The project has also allowed NPL to develop a range of new capabilities in metrology to assess energy and power in capacitors across a temperature range, which it will be offering as a new service.

The capacitor was developed as part of the Technology Strategy Board Project, Advanced Capacitors for Energy Storage (ACES). NPL are interested in hearing from industrial partners interested in licensing the innovation. NPL led the project and partners included Queens University of Belfast, Queen Mary University, Syfer and Valeo.

NPL is keen to hear from industry partners who are interested in licensing this technology. Interested parties should contact:

Tatiana Correia
tatiana.correia@npl.co.uk
Tel: +44 (0) 20 8943 8539

David Lewis | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>