Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group Seeks Alternative Uses for Marcellus Shale Gas

06.07.2011
A new industry-led initiative to promote in-state utilization of Marcellus Shale natural gas by developing combined-heat-and-power (CHP) systems was announced Thursday at the Natural Gas Utilization Workshop at Penn State.

The Commonwealth Recycled Energy Economic Development Alliance (CREEDA) wants to jumpstart development of CHP systems, which recover waste heat from the generation of electricity and then use it for additional purposes including humidity control, cooling and heating and refrigeration.

“Marcellus Shale-natural gas powered CHP systems are more efficient than conventional electricity generation. They also are the lowest cost method for reducing carbon emissions because they have longer operating hours throughout the year than solar photovoltaic or wind-powered systems,” said Richard Sweetser, senior advisor with the U.S. Department of Energy’s Mid-Atlantic Clean Energy Application Center, who introduced the initiative.

Held June 29 and 30 at Penn State’s University Park campus, the workshop drew more than 130 invited participants from natural gas companies, state agencies, local and state government and University researchers who examined three high-value uses for the long-term supply of natural gas being produced in Pennsylvania’s Marcellus Shale.

Besides CHP systems, the use of natural gas in transportation and as a fuel and feedstock for local manufacturing were discussed, with input from international companies with experience in the economics of large scale energy projects, which the Marcellus has the potential to support.

The Marcellus, stretching from West Virginia through much of Pennsylvania and into New York, is thought to be the largest of about two dozen shale gas plays in the nation with as much as 500 trillion cubic feet of recoverable natural gas. The increasing supply of domestic natural gas represents a new fuel source for manufacturers, public transit systems, schools and hospitals.

Marcellus natural gas, for instance, has the potential to reinvigorate the petrochemical industry in eastern Pennsylvania and create new petrochemical production in western Pennsylvania, said Tom Richard, director of the Penn State Institutes of Energy and the Environment (PSIEE).

“This is not just about clean energy or about creating a demand for cheap energy but about economic development,” Richard said. “Industries that use natural gas as a feedstock produce eight times more jobs than those that simply burn the fuel.”

Energy-intensive businesses in Pennsylvania that could potentially use Marcellus Shale natural gas include furnaces and foundries, lumber and wood products and food processing.

Workshop participants also explored the advantages of transitioning from petroleum-based fuels to natural gas-based fuels for transportation, advantages which include reductions in emissions and lower costs on a gasoline-gallon equivalent.

But switching involves significant challenges, from the cost of converting engines to natural gas to the limited refueling infrastructure across both the state and the nation. Regulatory barriers to conversions and bi-fuel vehicles also must be overcome.

“We need high-profile demonstrations with vehicle deployment to show that we can make this work,” said Andre Boehman, professor of fuel science in the Penn State College of Earth and Mineral Sciences.

While as recently as 60 years ago, many of Pennsylvania’s state institutions were powered by CHP, one of the biggest challenges facing adoption of these systems is lack of awareness by potential users, policy makers and the public of the benefits, such as greater fuel efficiency and lower carbon emissions. The target users of CHP include schools, hospitals and industrial plants.

But the development of CHP systems also faces regulatory and investment barriers. CREEDA, an alliance of natural gas utilities, end users, developers, manufacturers and academic researchers, will be key in developing a statewide CHP energy policy that addresses those barriers, Sweetser said.

Developing new uses and new markets for Marcellus Shale natural gas will take concerted and sustained efforts to educate stakeholders from elected officials and public policy makers to citizens, said Tom Murphy, co-director of Penn State’s Marcellus Center for Outreach and Research (MCOR).

“We need to rally the public with good science and good information,” Murphy told the group. “We need to let the public know the process of getting energy to them, so they can decide their own energy future. And we need to let parents know that there will be good jobs available for their children through wise use of our natural resources.”

The workshop was co-hosted by the Ben Franklin Technology PArtners, Central and Northern Pennsylvania, and the U.S. Department of Energy Clean Energy Application Center and was organized by the Penn State Industrial Research Office, Marcellus Center for Outreach and Research, and the Penn State Institutes of Energy and the Environment.

For more information , contact John Siggins at Penn State’s Industrial Research Office, 814-865-2879, or johnsiggins@psu.edu. Tom Richard can be contacted at trichard@psu.edu. Richard Sweetser, Senior Advisor, U.S. Department of Energy, Mid-Atlantic Clean Energy Application Center can be reached at 703-707-0293 or

rsweetser@exergypartners.com.

John Siggins | Newswise Science News
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Energy-efficient spin current can be controlled by magnetic field and temperature
17.08.2018 | Johannes Gutenberg-Universität Mainz

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>