Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conquering deep-water sites - start of EU project enlarges offshore potential for wind energy

01.12.2010
With a kick-off meeting in Bremerhaven 19 partners from 8 European countries under the direction of the Fraunhofer IWES entered the conception phase for the largest publicly funded research project on development of enabling technology elements for deep-water offshore wind. Contributing 11 million euro to the 20 million euro budget 5-year project, the European Commission underlines the tremendous economic potential of offshore wind energy.

Since pioneering activities in this field were so far privately financed, the existing knowledge is fragmented. In the HiPRwind project, cutting edge research centers and top-notch European industrial players collaborate openly.

“For the first time, the HiPRWind project provides comprehensive measurement data on wind turbines with floating structures. Therefore, project partners from companies and research institutes will jointly identify opportunities for cost cuttings to enhance offshore wind energy at deep water sites”, underlines Prof. Dr. Andreas Reuter, Director of project coordinator Fraunhofer IWES.

HiPRwind (read “hyperwind") is an EU project introducing a new cross-sectoral approach to the development of very large offshore wind turbines. Focused on floating systems, this 5-year pan-European R&D effort will develop and test new solutions for enabling offshore wind technologies at an industrial scale. The project is designed with an “open architecture, shared access” approach in that

the consortium of 19 partners will work together, in a collaborative way, to develop enabling structural and component technology solutions for very large wind power installations in medium to deep waters. Results of general interest will be shared within the broader R&D community working on future wind energy solutions.

A central outcome of HiPRwind is to deliver a fully functional floating wind turbine installation at approximately 1:10th scale of future commercial systems, deployed at real sea conditions. This research & testing facility, a world’s first, will be used to research new solutions and generate field data. The project will address critical issues of offshore wind technology such as the need for extreme reliability, remote maintenance and grid integration with particular emphasis on floating wind turbines, where economic and technical weight and size limitations of wind turbines and support structures can be overcome.

Innovative engineering methods will be applied to selected key development challenges such as rotor blade designs, structural health monitoring systems, reliable power electronics and control systems. Built-in active control features will reduce the dynamic loads on the floater in order to save weight and cost compared to existing designs. HiPRWind will develop and test novel, cost effective approaches to floating offshore wind turbines at a lower 1-MW scale.

In this way, the project will overcome the gap in technology development between small scale tank testing and full scale offshore deployment. Thereby, HiPRwind will significantly reduce the risks and costs of commercialising deep water wind technology. The HiPRwind project will make use of existing test locations which offer a favourable permitting situation and infrastructure such as grid connection and monitoring facilities already in place.

In Work Package (WP) 1, the floating support structure and its moorings system will be designed, whereas WP2 is focused on the construction of the full demonstrator unit, its assembly at port facilities and installation at the offshore test site. WP 3 covers the coordination and operation of the platform related research. Within WP 4 to 7, critical aspects of the floating wind turbine are investigated, such as the structure and its system dynamics, the controller, condition and structural health monitoring systems, and the rotor based on innovative blade designs and features. High reliability power electronics will be designed, assembled and tested in the lab at a multi-MW scale. The R&D results all feed into WP8 which is dedicated to identifying and refining new concepts for very large offshore wind turbines. The project also has dedicated WPs for dissemination and IPR exploitation, addressing also non-specialist and non-technical target groups, as well as project management drawing on both research and industry consortium members.

The full impact of the HiPRwind project will be ensured by the strong and close collaboration of participating best-in-class industrial and R&D players in the maritime and wind energy sector with a strong background on successful industrial development in harsh environments.This joint cross-sectoral approach aims to stimulate market development in floating wind technology. Improving the cost efficiency of offshore wind energy will facilitate exploitation of untapped deep-water wind resources. An ambitious dissemination approach will promote broad awareness and up-take of project results in successive R&D pro- jects.

List of project partners

FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER
ANGEWANDTEN FORSCHUNG E.V / Germany
INGENIERIA Y DISEÑO EUROPEO S.A. / Spain
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET /
Norway
ACCIONA ENERGIA S.A. / Spain
SINTEF ENERGI AS / Norway
TECHNIP FRANCE SAS / France
NATIONAL RENEWABLE ENERGY CENTRE LIMITED / United
Kingdom
ABB SCHWEIZ AG / Switzerland
FUNDACION ROBOTIKER Tecnalia / Spain
WOLFEL BERATENDE INGENIEURE GMBH &CO KG / Germany
Mammoet Europe BV / Netherlands
DR TECHN OLAV OLSEN AS / Norway
BUREAU VERITAS-REGISTRE INTERNATIONAL DE CLASSIFICATION
DE NAVIRES ET D’AERONEFS / France
MICROMEGA DYNAMICS SA / Belgium
UNIVERSITAET SIEGEN / Germany
TWI LIMITED / United Kingdom
1-TECH / Belgium
ACCIONA WINDPOWER / Spain
VICINAY CADENAS SOCIEDAD ANONIMA VICINAY / Spain
Weitere Informationen:
http://www.hiprwind.eu Coming soon
http://www.hyperwind.eu Coming soon
http://www.iwes.fraunhofer.de Project coordinator

Britta Rollert | Fraunhofer-Institut
Further information:
http://www.iwes.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht Patented nanostructure for solar cells: Rough optics, smooth surface
18.09.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht With Gallium Nitride for a Powerful 5G Cellular Network - EU project “5G GaN2” started
17.09.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>