Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avoiding efficiency losses in silicon solar cells already in the production process

28.10.2015

From basic idea to implementation: University of Konstanz, Germany, invested 10 years of research and development work: Under operating conditions, however, Cz-silicon solar cells suffer from so-called light-induced degradation (LID), due to which the efficiency of a Cz-silicon solar cell is considerably reduced after only a few hours of exposure to solar radiation. Depending on the material and production process, the loss in efficiency can be more than one percent absolute.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Konstanz in patenting and marketing its innovation.

One of the biggest challenges in the context of ‘renewable energies` is the even more efficient use of the raw materials available to us. Particularly when it comes to generating electricity from sunlight, a lot of research is carried out on how to further increase conversion efficiency of solar cells.


Researchers at the Photovoltaics Division of the University of Konstanz: Professor Giso Hahn, Svenja Wilking und Axel Herguth (from left).

TLB GmbH

In the past decade, the efficiency of solar cells in industrial mass production has been continuously improved. About 15 years ago, solar cells were able to convert only approx. 15 percent of solar radiation into electricity. In the meantime, efficiency could be increased to approx. 20 percent.

This excellent efficiency is only reached on industrial scale with monocrystalline solar cells using silicon wafers grown by the Czochralski (Cz) technique. Under operating conditions, however, Cz-silicon solar cells suffer from so-called light-induced degradation (LID), due to which the efficiency of a Cz-silicon solar cell is considerably reduced after only a few hours of exposure to solar radiation. Depending on the material and production process, the loss in efficiency can be more than one percent absolute.

Researchers at the Photovoltaics Division of the University of Konstanz introduced a method to neutralize this type of degradation as early as in 2006. The process developed and optimized over the years by Axel Herguth, Svenja Wilking and Professor Giso Hahn can easily be integrated into the production process. The scientists made use of the fact that the degraded solar cells can be regenerated by exposing them to light energy at temperatures above 100 degrees Celsius. Alternatively, regeneration can also be achieved using voltage instead of light.

The regeneration process can be integrated at different stages into the production sequence, for solar cells, e.g., directly after the co-firing process or separately at the end of production. Another option is to apply the regeneration process to finished modules.

The economic potential of the regeneration effect is enormous: If the degradation-caused loss in efficiency of one percent absolute is nearly completely offset, this results in an additional power output of approx. five percent. With a 100 MWp line, this corresponds to more than one million euros per year.

"This means the return on invest is secured after only a few months, which significantly increases economic attractiveness and the opportunities for use of this groundbreaking technology," explains Professor Hahn, Head of Photovoltaic Division at the University of Konstanz.

Patents for the process and the regeneration furnace have already been granted in the most important industrial nations and regions such as in the United States, in Europe and China. In the meantime, first installations based on the patented method have been integrated into production processes. However, it is also likely that a number of imitation products have appeared on the market. "Our key challenge for the coming years will be to enforce the patents held by the University of Konstanz," says Dr.-Ing. Hubert Siller, Innovation Manager at TLB, Karlsruhe.

In recent years, this well-known method has been further developed and modified by Axel Herguth and Svenja Wilking, who are engaged in research at the University of Konstanz. The enhanced process control allows the regeneration process to be carried out much faster during the co-firing step. According to the researchers, this is due to a larger amount of hydrogen released from the silicon nitride anti-reflective coating into the silicon during co-firing. The process can thus be sped up considerably, improving its efficiency and making it attractive for inline processes in industrial mass production, for example. Ideally, this process may follow or even be integrated into the co-firing step. Professor Hahn is optimistic about the future: "We are confident that the regeneration method discovered and developed by our team of researchers will become an integral part of a lot of new solar cell production lines because it helps to achieve the high level of stable efficiency that is required by the market. Moreover, current production lines can be retrofitted with minimal effort by using this unique regeneration technology.”

Technologie-Lizenz-Büro (TLB) GmbH supports the University of Konstanz in patenting and marketing its innovation. Acting on behalf of the University, TLB is in charge of the commercial implementation of this future-orientated technology at a global level. For more detailed information, please contact Dr.-Ing. Hubert Siller, email: siller@tlb.de

Weitere Informationen:

http://www.tlb.en
http://cms.uni-konstanz.de/en/physik/hahn/

Annette Siller | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>