Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Agricultural insecticide contamination threatens U.S. surface water integrity at the national scale

06.12.2018

Insecticide contamination of surface waters regularly occurs across the U.S. in concentrations that have severe detrimental effects on aquatic ecosystems. This was found by a recent study by the Institute for Environmental Sciences Landau, Germany. According to their findings, insecticide contamination occurs widespread throughout the United States and risks are expected to increase in the future. This studies shows that insecticides thus threaten one of the most important natural resources and highlights the urgent need to re-evaluate current regulatory practices in the U.S.

Insecticides are applied in large volumes across the United States to protect agricultural crops from insect pests. As has been shown before through studies e.g. by the USGS or the U.S. EPA, these substances can be transported from agricultural fields into adjacent water bodies via various pathways where they have profound adverse effects on both water quality and biodiversity.


Degraded agricultural stream in the Mississippi delta.

Ralf Schulz

Therefore, insecticides have to pass an elaborated environmental risk assessment procedure before being sold and applied to crops. During this process, regulatory threshold concentrations are derived, which should not be surpassed, in order to prevent adverse effects in non-target environments such as surface waters.

These thresholds were compared to actual field concentrations of 32 commonly applied insecticides, obtained from 259 peer-reviewed publications reporting insecticide concentrations in more than 600 water bodies in the U.S.

In this extensive meta-analysis, about half of the total of 5817 measured insecticide concentrations exceeded these critical thresholds; more so, about one fourth of all concentrations surpassed these thresholds by a factor of ten or more.

Thus insecticides occur frequently at adverse concentrations and exceed levels that were expected during the pesticides’ approval process. In addition, risks were even more pronounced for smaller water bodies, which is especially concerning considering that they denote critical habitats for endangered species and serve as important spawning grounds for fish.

In particular newer insecticides, such as pyrethroids and neonicotinoids, were of particular concern, replacing older substances but thereby failing to provide a more environmentally safe alternative.

“One of our biggest concerns is that environmental risks did not decrease over time.”, added Jakob Wolfram. As a result, insecticides’ current use practices may not be in accordance with environmental protection goals, requiring a critical reassessment of their environmental risks.

In the future, insecticide application may even increase due to changing weather conditions and intensifying pressure from invasive pest species. Addressing this central challenge to surface water integrity appears thus more pressing than ever, if sustainable and safe use of water resources should be achieved in the United States.

Wissenschaftliche Ansprechpartner:

University of Koblenz-Landau
Department of Environmental Sciences
Prof. Dr. Ralf Schulz
Fortstraße 7
D-76829 Landau
Phone: +49 6341 280-31327
Email: schulz@uni-landau.de

Originalpublikation:

“Meta-Analysis of Insecticides in United States Surface Waters: Status and Future Implications” by Jakob Wolfram, Sebastian Stehle, Sascha Bub, Lara L. Petschick, Ralf Schulz. The study was published on November 26, 2018 in the journal Environmental Science & Technology.

Weitere Informationen:

http://dx.doi.org/10.1021/acs.est.8b04651

Giovanna Marasco-Albry | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-koblenz-landau.de

More articles from Power and Electrical Engineering:

nachricht New graphene-based metasurface capable of independent amplitude and phase control of light
20.02.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht A step towards controlling spin-dependent petahertz electronics by material defects
19.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>