Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers

22.05.2019

Researchers at Tokyo Institute of Technology have found a simple, yet highly versatile, way to generate "chaotic signals" with various features. The technique consists of interconnecting three "ring oscillators," effectively making them compete against each other, while controlling their respective strengths and their linkages. The resulting device is rather small and efficient, thus suitable for emerging applications such as realizing wireless networks of sensors.

Our ability to recreate the signals found in natural systems, such as those in brains, swarms, and the weather, is useful for our understanding of the underlying principles. These signals can be very complex, to the extreme case of the so-called "chaotic signals."


The simple idea underlying the design of the circuit is linking together some ring oscillators having lengths equal to the smallest odd prime numbers, such as 3, 5 and 7 (top). Even a simple sum between sine waves having such periods yields a complicated-looking signal (bottom), but the interactions between real oscillators lead to a much richer scenario.

Credit: Ludovico Minati


Diagram of the proposed chaotic oscillator circuit, wherein the strengths of the ring oscillators and their linkages are controlled independently, and its prototype layout (top). Examples of three generated signals having rather different qualities: cycle amplitude fluctuations, spike trains, and noise (bottom).

Credit: Ludovico Minati

Chaos does not mean randomness; it represents a very complicated type of order. Minute changes in the parameters of a chaotic system can result in greatly different behaviors. Chaotic signals are difficult to predict, but they are present in lots of different scenarios.

Unfortunately, the generation of chaotic signals with desired features is a difficult task. Creating them digitally is in some cases too power consuming, and approaches based on analog circuits are necessary. Now, researchers in Japan, Italy, and Poland propose a new approach for creating integrated circuits that can generate chaotic signals.

This research was the result of a collaboration between scientists from Tokyo Institute of Technology (Tokyo Tech), in part funded by the World Research Hub Initiative, the Universities of Catania and Trento, Italy, and the Polish Academy of Sciences in Krakow, Poland.

The research team started from the idea that cycles that have periods set by different prime numbers cannot develop a fixed phase relationship. Surprisingly, this principle seems to have emerged in the evolution of several species of cicadas, whose life cycles follow prime numbers of years, to avoid synchronizing with each other and with predators.

For example, if one tries to "tie together" oscillators with periods set to the first three prime numbers (3, 5 and 7), the resulting signals are very complicated and chaos can readily be generated (Fig. 1).

The design started from the most traditional oscillator found in integrated circuits, called the "ring oscillator," which is small and does not require reactive components (capacitors and inductors). Such a circuit was modified so that the strengths of ring oscillators having three, five and seven stages could be controlled independently, along with the tightness of their linkages.

The device could generate chaotic signals over a wide frequency spectrum, from audible frequencies to the radio band (1 kHz to 10 MHz). "Moreover, it could do so at a rather low power consumption, below one-millionth of a watt," explains Dr. Hiroyuki Ito, head of the laboratory where the prototype was designed.

Even more remarkable was the discovery that totally different types of signals could be generated depending on the slightly different characteristics the individual prototypes (Fig. 2). For example, the researchers recorded trains of spikes quite similar to what is found in biological neurons.

They also found situations in which the rings "fought each other" to the point of almost completely suppressing their activity: this phenomenon is called "oscillation death."

"This circuit draws its beauty from a really essential shape and principle, and simplicity is key to realizing large systems operating collectively in a harmonious manner, especially when it enriched by small differences and imperfections, such as those found in the realized circuits," says Dr. Ludovico Minati, lead author of the study.

The team believes in its future ability to be a building block for many different applications. They will work on integrating this circuit with sensors to, for example, measure chemical properties in the soil. Additionally, they will create networks of these oscillators on single computer chips interconnected in manners that resemble biological neural circuits. They hope to realize certain operations while consuming many times less power than a traditional computer.

Media Contact

Emiko Kawaguchi
media@jim.titech.ac.jp
81-357-342-975

http://www.titech.ac.jp/english/index.html 

Emiko Kawaguchi | EurekAlert!
Further information:
http://dx.doi.org/10.1109/ACCESS.2019.291290

More articles from Power and Electrical Engineering:

nachricht Record efficiency for printed solar cells
09.07.2020 | Swansea University

nachricht Bespoke catalysts for power-to-X
09.07.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>