Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt holds samples of ancient seas

02.11.2001


Calcium content of ancient water hints at origins of shelled life.
© Corbis


Water trapped for millions of years gives a glimpse of oceans’ turbulent past.

Drops of sea water entombed within salt crystals millions of years ago are giving researchers a glimpse of ancient oceans. The water, trapped during evaporation, reveals that the seas have seen large chemical changes during their history.

"The consensus had been that sea-water chemistry hadn’t changed that much over the past 600 million years," says geochemist Juske Horita of Oak Ridge National Laboratory, Tennessee. The trapped drops are the "first strong evidence" to the contrary, he says.



Geologist Tim Lowenstein, of the State University of New York, Binghamton, and his colleagues gathered crystals from rock salt deposits, froze them and sliced them open. Using X-rays, they probed the chemical composition of water pockets as small as 30 micrometres across - one third of the width of a human hair1.

Crystals from Australia, the Middle East and the Americas, spanning the past 550 million years, suggest that the ratio of calcium to magnesium in sea water has fluctuated by a factor of more than five.

This record needs to be read with care, cautions geologist Robert Goldstein, of the University of Kansas. Salt crystals form only in unusual environments such as lagoons. To translate the droplets into an accurate reflection of the ocean of the time requires "many, many assumptions", Goldstein says.

Despite these drawbacks, Horita believes that "it is probably the best geological record we have right now".

Drop in the ocean

The challenge now is to match the mooted changes in sea-water chemistry with the geological forces that might have caused them. Possible suspects include underwater volcanoes and earthquakes.

When sea-floor plates move apart they release calcium into the water. Lowenstein’s team found that calcium-rich sea water tended to come from periods of ocean-floor spreading.

"It’s a neat picture," says Goldstein. But it’s not complete. Minerals washed off the land by rivers also influence ocean chemistry, as does the atmosphere, he points out.

Recreating how atmosphere, Earth and ocean interacted in the past should help us predict how ocean chemistry will respond to future forces such as rising levels of greenhouse gases. But, warns Goldstein, the final story "will be a lot more complicated than we could ever have imagined".

Life also plays its part. Animals remove large amounts of calcium - a key component of shells and skeletons - from the ocean. Lowenstein’s team saw a large rise in the amount of calcium in the ocean around the time of the Cambrian Explosion.

"This is the period about 540 million years ago when the major animal groups appear in the fossil record. Rising calcium may have stimulated the origin of shelled organisms", Lowenstein speculates.

References
  1. Lowenstein, T. K. et al. Oscillation in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294, 1086 - 1088, (2001).

JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/011108/011108-1.html
http://www.nature.com/nsu/

More articles from Earth Sciences:

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

nachricht More than 90% of glacier volume in the Alps could be lost by 2100
09.04.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>