Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prehistoric Greenhouse Data from Ocean Floor Could Predict Earth’s Future

28.10.2011
Evidence of water mass moving south 70 million years ago shows how warmth was distributed

New research from the University of Missouri indicates that Atlantic Ocean temperatures during the greenhouse climate of the Late Cretaceous Epoch were influenced by circulation in the deep ocean. These changes in circulation patterns 70 million years ago could help scientists understand the consequences of modern increases in greenhouse gases.

“We are examining ocean conditions from several past greenhouse climate intervals so that we can understand better the interactions among the atmosphere, the oceans, the biosphere, and climate,” said Kenneth MacLeod, professor of geological sciences in the College of Arts and Science. “The Late Cretaceous Epoch is a textbook example of a greenhouse climate on earth, and we have evidence that a northern water mass expanded southwards while the climate was cooling. At the same time, a warm, salty water mass that had been present throughout the greenhouse interval disappeared from the tropical Atlantic.”

The study found that at the end of the Late Cretaceous greenhouse interval, water sinking around Greenland was replaced by surface water flowing north from the South Atlantic. This change caused the North Atlantic to warm while the rest of the globe cooled. The change started about five million years before the asteroid impact that ended the Cretaceous Period.

To track circulation patterns, the researchers focused on “neodymium,” an element that is taken up by fish teeth and bones when a fish dies and falls to the ocean floor. MacLeod said the ratio of two isotopes of neodymium acts as a natural tracking system for water masses. In the area where a water mass forms, the water takes on a neodymium ratio like that in rocks on nearby land. As the water moves through the ocean, though, that ratio changes little. Because the fish take up the neodymium from water at the seafloor, the ratio in the fish fossils reflects the values in the area where the water sank into the deep ocean. Looking at changes through time and at many sites allowed the scientists to track water mass movements.

While high atmospheric levels of carbon dioxide caused Late Cretaceous warmth, MacLeod notes that ocean circulation influenced how that warmth was distributed around the globe. Further, ocean circulation patterns changed significantly as the climate warmed and cooled.

“Understanding the degree to which climate influences circulation and vice versa is important today because carbon dioxide levels are rapidly approaching levels most recently seen during ancient greenhouse times,” said MacLeod. “In just a few decades, humans are causing changes in the composition of the atmosphere that are as large as the changes that took millions of years to occur during geological climate cycles.”

The paper, “Changes in North Atlantic circulation at the end of the Cretaceous greenhouse interval,” was published in the October online edition of the journal Nature Geoscience. Coauthors include C. Isaza Londoño of the University of Missouri; E.E. Martin and C. Basak of the University of Florida, and A. Jiménez Berrocoso of the Unviersity of Manchester, United Kingdom. The study was sponsored by the National Science Foundation.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>