Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing the tuneable RF chip

05.03.2004


Most tuning for radios, mobile telephones, GPS sets and other communication devices uses dedicated radio frequency (RF) circuitry. Recent research suggests that a single tuneable RF circuitry could be developed that would suit different applications.



Making RF modules tuneable to different applications

Tuneable capacitors will be familiar to any engineer over a certain age who remembers constructing simple kit radios or radio control devices. Tuning these circuits was often carried out via two sets of metal plates that rotated around a spindle, forming in effect a tuneable device.


"We use much the same principle as the old air capacitor," says project leader Joost van Beek of Philips Electronics Nederland. "Except that now we use thin-film technology in which the tuning blades of the capacitor may be only a couple of microns thick."

The RF modules in radio circuits tend to incorporate a great many passive components such as resistors, capacitors, inductors, etc. The participants in the IST programme-funded project MEMS2TUNE have already achieved their goal of integrating such passive components with the tuneable component of the circuit within a single chip.

The challenge that remains before the project is completed at the end of December 2004 is to make those chips, with integrated passive and tuneable components, adaptable to different applications. "We have demonstrated these functions successfully at component level," says van Beek. "We have circuits that can be tuned - what we have to do now is demonstrate these functions at a system level."

And demonstrating such functions successfully at system level is the job of two other partners in the project, Ericsson and Alcatel Space. These two organisations have prototype demonstrators already, he says.

GSM, PDA and GPS in one handset?

What sort of benefits can be expected from success in the project? "The most important benefit is that of product miniaturisation," says van Beek. "Mobile phones for example could have many more functions within the same size shell as they have now. PDAs, mobile phones and GPS handsets could all merge into a single device. These are the kind of advantages we are talking about if we can produce a single RF module that can be tuned to all these different applications."

Contact:
Joost van Beek
Philips Electronics Nederland
Prof Holstlaan 4
Mailbox WA14
NL-5656 AA Eindhoven
The Netherlands
Tel: +31-40-2742863
Fax: +31-40-2744911
Email: J.T.M.van.Beek@philips.com

Source: Based on information from MEMS2TUNE

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=62846

More articles from Communications Media:

nachricht The plastic brain: Better connectivity of brain regions with training
02.07.2018 | Leibniz-Institut für Wissensmedien

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>