Lighting the way to early cancer detection

Scientists at the University of Sussex are pioneering a non-invasive way to identify cancers. The team has vastly improved a system for detecting cancer in the early stages, without putting patients through painful exploratory procedures.

The detection works by beaming ultra violet light at a patient and analysing the information reflected. This information, known as luminescence, reveals a spectrum of colours that separates healthy and cancerous tissue. The results show whether the light has hit healthy or abnormal cells, long before any damage becomes visible to the eye.

Dr Natalia Beloff, a lecturer in software engineering, is carrying out computer simulations to improve the basic system ready for manufacture. Her research will radically improve the sensitivity of the receiver detecting luminescence.

Dr Beloff said: “The earlier cancer is detected, the better chance a patient has of recovery. We hope that within a few years clinics across the country may be able to use the photocathode device to help save lives. During the last three years there has been an explosion in the literature on successful early detection of skin, bronchial, oral and many other cancers types using luminescence. In the future it could work well for breast cancer, one of the main killers of women today. We cannot as yet see deep-set cancers, such as bone or stomach, but the technology is improving all the time.”

Dr Beloff’s findings will speed the development of the device by avoiding costly and time-consuming laboratory testing. She said: “In recent years, my colleagues at Sussex have improved photocathode detector performance by up to 20 times previous capabilities, significantly outperforming all other devices available in the world. This pioneering new work will allow us to see the practical application of our science for the benefit of all society.”

The latest research builds on breakthroughs by Sussex cathode theorist Dr. Stuart Harmer and experimental physicist Prof. Peter Townsend, inventor of a world leading way to improve the cathodes. The next stage of development links up with two UK industrial companies, Photek in Hastings and manufacturers of the final design Electron Tubes Ltd in Ruislip. The research is being funded by a £125,000 grant from the Engineering and Physical Sciences Research Council and £70,000 from Electron Tubes Ltd. The project is part of Framework V, a two million euro EU programme.

Media Contact

Alix Macfarlane University of Sussex

All news from this category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Acute itching in eczema patients linked to environmental allergens

Newly identified pathway explains why antihistamine drugs often don’t work to control severe itch. In addition to a skin rash, many eczema sufferers also experience chronic itching, but sometimes that…

Simulating evolution to understand a hidden switch

Computer simulations of cells evolving over tens of thousands of generations reveal why some organisms retain a disused switch mechanism that turns on under severe stress, changing some of their…

How cells move and don’t get stuck

Cell velocity, or how fast a cell moves, is known to depend on how sticky the surface is beneath it, but the precise mechanisms of this relationship have remained elusive…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close