New weapon to combat resistant bacteria

The problem of hospital infection, severe disease caused by antibiotic-resistant staphylococcus bacteria, entails major costs and great suffering. Group A streptococcus bacteria, also called meat-eating killer bacteria, are another growing problem. A team of Lund scientists in Sweden has now developed a substance called Cystapep, which seems to work on bacteria that nothing else seems to be able to knock out.

If Cystapep delivers what it promises, this is nothing short of sensational. Sweden is in a better position than other countries when it comes to antibiotic resistance, but in other parts of the world dangerous strains of bacteria have developed resistance to most of the antibiotics doctors have in their arsenal, and the problem is growing worse every year in Sweden as well.

Cystapep took its name from the fact that it is a peptide (a small molecule) that is based on a larger protein called cystatin. Cystatin occurs in various forms in the body and is part of our natural protection against bacteria, fungi, and viruses. The Lund researchers Aftab Jasir and Claes Schalén, medical microbiology, and Anders Grubb, clinical chemistry, have collaborated with a team of Polish scientists to cultivate and develop the segment of cystatin C protein that has proven to provide the best protection.

“The substance has been shown to be effective against infectious staphylococcus, streptococcus, enterococcus, and pneumococcus bacteria, which include many dangerous and more or less antibiotic-resistant strains. On the other hand, the body’s own flora of bacteria is not affected, which is good news,” says Aftab Jasir.

Cystapep has also been shown to attack polio and herpes viruses. The fact that one and the same substance works against not only infectious bacteria but also viruses is unique. And the substance seems to have its very own modus operandi that bacteria cannot easily defend themselves against. The Lund team has tried to induce resistance to Cystapep by creating mutations, a procedure that is usually not very difficult, but it didn’t work at all in this case.

The researchers have just published their findings in APMIS, Acta Patologica Microbiologica Immunologica Scandinavica. They have also applied for a patent on Cystapep in order to be able to continue their research. Before transferring the patent to the pharmaceuticals industry, they want to learn more about the way the substance works, try to make it even more effective, and try out its efficacy against foreign strains of bacteria. Since Aftab Jasir and Claes Schalén are the project leader and coordinator, respectively, of a major EU project on A-streptococci, they have ready access to bacteria cultures from other countries. Clinical use of the substance may become a reality in 5 to 10 years’ time.

Media Contact

Ingela Björck alfa

More Information:

http://www.lu.se

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Faster, more energy-efficient way to manufacture an industrially important chemical

Zirconium combined with silicon nitride enhances the conversion of propane — present in natural gas — needed to create in-demand plastic, polypropylene. Polypropylene is a common type of plastic found…

Energy planning in Ghana as a role model for the world

Improving the resilience of energy systems in the Global South. What criteria should we use to better plan for resilient energy systems? How do socio-economic, technical and climate change related…

Artificial blood vessels could improve heart bypass outcomes

Artificial blood vessels could improve heart bypass outcomes. 3D-printed blood vessels, which closely mimic the properties of human veins, could transform the treatment of cardiovascular diseases. Strong, flexible, gel-like tubes…

Partners & Sponsors