UV Beam Identifies Invisible Air Pollutants

The Falcon system scans for up to 20 toxic substances

Air pollution used to be something you could see and smell. But as air quality standards have tightened, the air over most industrial sites, airports and cities has gradually cleared. Nevertheless, invisible toxic agents such as ethyl benzene, butadiene and styrene continue to pose risks to public health. With a view to detecting and quantifying these agents, Siemens Environmental Systems Limited in Poole, England has introduced UV Falcon. The system consists of a transmitter that projects a UV (ultraviolet) beam generated by a deuterium lamp across an open path of between 10 – 200 meters to a receiver. Based on the principle that gases have characteristic “spectral fingerprints,” or in other words absorption lines in the 200 – 300 nanometer UV range, the system uses a patented fourier transform spectrometer to scan the beam for up to 20 toxic and environmentally harmful gases in low parts per billion levels. Although the majority of applications are for fixed installations, the Environment Agency of England and Wales recently purchased a Falcon system for rapid mobile deployment.

Media Contact

Innovation News

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

New technique can quickly detect fentanyl and other opioids

Testing method can analyze blood samples twice as quickly as other techniques. University of Waterloo researchers have developed a new blood testing method that can detect potent opioids much faster…

Photon upconversion: Steering light with supercritical coupling

Researchers from the National University of Singapore (NUS) have unveiled a novel concept termed “supercritical coupling” that enables several folds increase in photon upconversion efficiency. This discovery not only challenges…

Researchers harness 2D magnetic materials for energy-efficient computing

An MIT team precisely controlled an ultrathin magnet at room temperature, which could enable faster, more efficient processors and computer memories. Experimental computer memories and processors built from magnetic materials…

Partners & Sponsors