Why wind turbines can mean death for bats

Ninety percent of the bats they examined after death showed signs of internal hemorrhaging consistent with trauma from the sudden drop in air pressure (a condition known as barotrauma) at turbine blades. Only about half of the bats showed any evidence of direct contact with the blades.

“Because bats can detect objects with echolocation, they seldom collide with man-made structures,” said Erin Baerwald of the University of Calgary in Canada. “An atmospheric-pressure drop at wind-turbine blades is an undetectable—and potentially unforeseeable—hazard for bats, thus partially explaining the large number of bat fatalities at these specific structures.

“Given that bats are more susceptible to barotrauma than birds, and that bat fatalities at wind turbines far outnumber bird fatalities at most sites, wildlife fatalities at wind turbines are now a bat issue, not a bird issue.”

The respiratory systems of bats and birds differ in important ways, in terms of both their structure and their function. Bats' lungs, like those of other mammals, are balloon-like, with two-way airflow ending in thin flexible sacs surrounded by capillaries, the researchers explained. When outside pressure drops, those sacs can over-expand, bursting the capillaries around them. Bird lungs, on the other hand, are more rigid and tube-like, with one-way circular airflow passing over and around capillaries. That rigid system can more easily withstand sudden drops in air pressure.

The majority of bats killed at wind turbines are migratory bats that roost in trees, including hoary bats, eastern red bats, and silver-haired bats. While little is known about their population sizes, the researchers said, those deaths could have far-reaching consequences.

Bats typically live for many years, in some cases reaching ages of 30 or more. Most also have just one or two pups at a time, and not necessarily every year. “Slow reproductive rates can limit a population's ability to recover from crashes and thereby increase the risk of endangerment or extinction,” said Robert Barclay, also at the University of Calgary, noting that migrating animals tend to be more vulnerable as it is.

All three species of migratory bats killed by wind turbines fly at night, eating thousands of insects—including many crop pests—per day as they go. Therefore, bat losses in one area could have very real effects on ecosystems miles away, along the bats' migration routes.

Baerwald said there is no obvious way to reduce the pressure drop at wind turbines without severely limiting their use. Because bats are more active when wind speeds are low, one strategy may be to increase the speed at which turbine blades begin to rotate during the bats' fall migration period.

The researchers include Erin F. Baerwald, Genevieve H. D'Amours, Brandon J. Klug and Robert M.R. Barclay of the University of Calgary in Calgary, AB Canada.

Media Contact

Cathleen Genova EurekAlert!

More Information:

http://www.cell.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors