Method for Determining the Frequency Response of an Electrooptical Component

<strong>Background</strong><br>

Currently frequency analysis of optical signals relies on electrooptical modulators generating variable frequency signals. Subsequently, the response of the component due to the signal is detected and analysed. Therefore, complex calibration of the system is necessary. Additionally, the frequency range is confined to that of the electrooptical modulator.<br><br> <strong>Technology</strong><br> This invention provides a method for determining the frequency response of an electrooptical component, particularly, of a light-generating or light-modulating component. Optical pulses with a pulse frequency are generated. The electrooptical component is controlled by an electrical measuring signal with a measuring frequency in such a manner that an optical output signal is formed that is modulated with the measuring frequency. The measuring frequency is equal to an integral multiple of the pulse frequency plus a predetermined frequency offset. The pulses and the output signal are mixed, and a mixed product is detected whose modulation frequency corresponds to the predetermined frequency offset. The mixed product indicates the frequency response of the electrooptical component at the measuring frequency.<br><br> <p><strong>Benefits</strong><br> <ul> <li>Frequency response of the system can be measured easily by autocorrelation</li> <li>No complex calibration of the measuring system is necessary</li> </ul> <p><strong>IP Rights</strong><br> German Patent DE 10346379<br> US Patent US 7 522 285 <br> <br> <strong>Origin</strong><br> Technische Universität Berlin, Germany</p>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors