Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SpectralFinder Easy-to-use, intuitive and quick hyperspectral distinction of materials

25.02.2014
The Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB exhibits the SpectralFinder on CeBIT, Hannover, between March 10 th and 14 th . The mobile system is capable of recording and analyzing large amounts of hyperspectral data in real-time. The exhibit can be found in hall 9, Booth E40.

The Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB exhibits the SpectralFinder on CeBIT, Hannover, between March 10 th and 14 th . The mobile system is capable of recording and analyzing large amounts of hyperspectral data in real-time. The exhibit can be found in hall 9, Booth E40. 


Detection of water pollution by oil

Which parts of the water surface are contaminated with oil? Is the dike’s vegetation cover intact? Did we find ore, or some type of rock? Did someone use the nature reserve as an illegal dump site for waste?

Man questions demand a reliable distinction of specific materials. Cameras with color sensitive hyperspectral sensors and efficient, innovative processing methods can detect different these materials where the human eye cannot.

Applications for such systems exist where surfaces have to be examined – airborne for environmental monitoring and disaster management, handheld when prospecting or inspecting structures, and also as part of fixed systems such as quality control at production lines.

The human eye only recognizes three different colors across its entire range of color vision: red, green and blue. In comparison, hyperspectral sensors capture more than 100 different color values for each pixel in the image. Processing algorithms use this high spectral resolution to achieve improved distinction between materials. This in turn lowers the false alarm rate for material detection.

State of the art sensor technology even allows the capture of hyperspectral videos. The stream of data to be processed surpasses 1 gigabyte per minute. Fraunhofer IOSB’s extensive experience with large-scale hyperspectral data processing and efficient algorithms allow the results to be available in almost real-time.

Easy-to-use, intuitive and quick

The interactive analysis allows for easy extraction of information by depicting the classification results directly on top of the data stream. The real-time capabilities of these analysis methods can support problem solution in areas where immediate action is necessary.

Employing the SpectralFinder as an airborne system, it can be used for quick reconnaissance, especially for environment protection and disaster management. It is possible to detect oil pollution, weaknesses on levees caused by pest infestation or erosion, as well as illegal garbage disposal.

The SpectralFinder has a compact, lightweight hyperspectral video camera. Its mobility even allows for handheld data acquisition at close range. In quality control of bridges, for example, spectrally suspicious areas can be highlighted and samples can be taken for further analysis.

Mounting the system to a conveyer it is possible to analyze bulk goods. In mining, it is possible to separate chunks of ore from wall rock.

Controlling the SpectralFinder is very intuitive. To compute a classification, the material is recorded with the hyperspectral camera and the data is directly transferred to the software. The user, then, selects an area of interest or a specific material from a database. The following classification is computed with this information, specifically adjusted to the desired purpose. A score is assigned to every pixel in the running video stream to evaluate the similarity between the area of interest and the recorded data. If a 3D model of the scene exists, it is even possible to visualize and work with the data in a virtual laboratory on a desktop computer.

Visitors of the Fraunhofer booth on CeBIT will have the opportunity to experience the SpectralFinder in action and see the intuitive handling and fast data processing in a live demonstration.

Weitere Informationen:

http://www.iosb.fraunhofer.de/servlet/is/43542/

Dipl.-Ing. Sibylle Wirth | Fraunhofer-Institut

More articles from Trade Fair News:

nachricht Innovative Infrared Emitters Optimize the Manufacture of Vehicle Interior Fittings Using Vacuum Lamination
01.08.2017 | Heraeus Noblelight GmbH

nachricht Bug-proof communication with entangled photons
22.06.2017 | Fraunhofer-Gesellschaft

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>