Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More rapid and efficient manufacturing of three-dimensional, transparent micro components

08.10.2012
At the 2012 glasstec international trade fair, which will take place in Düsseldorf from October 23 to 26, the Fraunhofer Institute for Laser Technology ILT is presenting a laser manufacturing technique for structuring transparent materials at the joint Fraunhofer booth 15/E25.
Thanks to this technique, it is now possible for the first time to manufacture even assembled components made of transparent materials such as glass from a single block – with micrometer accuracy. In contrast to ablative techniques, in-volume selective laser etching (ISLE) is exceptional for its efficient use of material.

Fused silica tubes with a diameter of one millimeter and a wall thickness of nine micrometers, hole arrays with bore diameters of 50 micrometers, microfluidic components for medical diagnostics with channels that are less than 10 micrometers in diameter: the components used in precision mechanics, medical engineering, and metrology are getting smaller and smaller as their complexity increases.

Illustration of the size of an ISLE-manufactured micro gear wheel.

Picture Source: Fraunhofer ILT, Aachen/Volker Lannert

Take the example of the clock- and watchmaking industry, where so-called jewel bearings have to be precisely manufactured and subsequently mounted. At present, experienced specialists manually produce and mount these micro components by means of grinding and polishing, which takes a lot of time. Moreover, ablative techniques always entail a loss of material –typically as high as 80% – which can seriously impact costs depending on the specific material.

Given the tiny scale of micro components, transparent, i.e. “colorless”, materials are not amenable to manual processing, as the craftsman cannot see them well enough. Consequently, manufacturers revert to using rubies, which in addition to their hardness also have the advantage of being a red color that is easily visible.

In-volume selective laser etching speeds up the manufacturing process and removes the need for assembly

In cooperation with the Chair for Laser Technology LLT at RWTH Aachen University, a new laser manufacturing technique was developed at Fraunhofer ILT. The technique shortens the manufacturing process for micro components made from transparent materials and reduces the amount of material and energy used. Now the experts have applied in-volume selective laser etching (ISLE) to the manufacture of composite and assembled parts. This means there is no longer any need to adjust and assemble the individual components in micromechanical systems. The exposure time for a gear wheel already mounted on a shaft and fitted inside a housing is only around 15 minutes using the ISLE technique.
The process works as follows: using ultrashort pulsed laser radiation, a transparent work piece is exposed in the volume with 3D resolution at precisely the areas where material is to be removed. The material is chemically and physically changed and therefore gets selectively etchable. In the subsequent wet-chemical etching process, the exposed material is removed, while the unexposed material is scarcely affected by the etching process. This process makes it possible to manufacture micro channels, shaped holes, structured parts, and complex, composite mechanical components and systems. The ISLE technique can also be used for sapphire and glass as well as ruby. It is reproducible and ensures that components are geometrically identical in series production, while also offering a high degree of geometric and design freedom. Particularly impressive are its ability to produce shapes with micrometer accuracy, as well as kerfs and bores with extremely large aspect ratios, thanks to the small focus volume. The ISLE technique enables a level of material and energy efficiency that is simply not possible to obtain mechanically using even the most advanced ablative processes.

Scaling the laser manufacturing technique for industrial application

The main challenge facing the researchers in Aachen now consists in developing the ISLE technique so that it can be used by the manufacturers of micro components. “We are constantly working on improving the scalability of our technique so that a transfer from the lab to industrial-scale production can take place sometime in the future,” explains Dr. Dagmar Schaefer, group manager at Fraunhofer ILT. “The ISLE technique is individually adapted to the customer’s requirements according to the specific application. The biggest challenge for us is to achieve both the required component specifications and a sufficiently rapid structuring process at the same time.”
The exposure speed is currently several hundred millimeters a second. The goal is to increase this to several meters a second. At present, exposing a mounted gear wheel with a diameter of three millimeters would take 15 minutes; the higher exposure speed would reduce this time by a factor of 10.
In the medium term, efforts will be aimed at exploiting the potential of the technique within individualized mass production. This entails improvements to the present state of development that include increasing laser power and repetition rates and the use of faster beam deflection systems . ISLE promises greater cost-effectiveness and flexibility in the production of micro components in small and large batches, as well as in the mass production of individualized components.

Further Contacts

Dr. Dagmar Schaefer
Head oft he Group In-Volume Structuring
Phone +49 241 8906-628
dagmar.schaefer@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Akad. Oberrat Dr. Ingomar Kelbassa
Acad. Director of the Chair for Laser Technology LLT at the RWTH Aachen University
Phone +49 241 8906-143
ingomar.kelbassa@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer ILT
Further information:
http://www.ilt.fraunhofer.de

More articles from Trade Fair News:

nachricht PHOTONICS CONGRESS CHINA 2016
04.02.2016 | Messe München GmbH

nachricht MD&M West 2016: IVAM presents high-tech for medical devices in California
03.02.2016 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

Chemical cages: New technique advances synthetic biology

10.02.2016 | Life Sciences

Engineering researchers use laser to 'weld' neurons

10.02.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>