Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More rapid and efficient manufacturing of three-dimensional, transparent micro components

08.10.2012
At the 2012 glasstec international trade fair, which will take place in Düsseldorf from October 23 to 26, the Fraunhofer Institute for Laser Technology ILT is presenting a laser manufacturing technique for structuring transparent materials at the joint Fraunhofer booth 15/E25.
Thanks to this technique, it is now possible for the first time to manufacture even assembled components made of transparent materials such as glass from a single block – with micrometer accuracy. In contrast to ablative techniques, in-volume selective laser etching (ISLE) is exceptional for its efficient use of material.

Fused silica tubes with a diameter of one millimeter and a wall thickness of nine micrometers, hole arrays with bore diameters of 50 micrometers, microfluidic components for medical diagnostics with channels that are less than 10 micrometers in diameter: the components used in precision mechanics, medical engineering, and metrology are getting smaller and smaller as their complexity increases.

Illustration of the size of an ISLE-manufactured micro gear wheel.

Picture Source: Fraunhofer ILT, Aachen/Volker Lannert

Take the example of the clock- and watchmaking industry, where so-called jewel bearings have to be precisely manufactured and subsequently mounted. At present, experienced specialists manually produce and mount these micro components by means of grinding and polishing, which takes a lot of time. Moreover, ablative techniques always entail a loss of material –typically as high as 80% – which can seriously impact costs depending on the specific material.

Given the tiny scale of micro components, transparent, i.e. “colorless”, materials are not amenable to manual processing, as the craftsman cannot see them well enough. Consequently, manufacturers revert to using rubies, which in addition to their hardness also have the advantage of being a red color that is easily visible.

In-volume selective laser etching speeds up the manufacturing process and removes the need for assembly

In cooperation with the Chair for Laser Technology LLT at RWTH Aachen University, a new laser manufacturing technique was developed at Fraunhofer ILT. The technique shortens the manufacturing process for micro components made from transparent materials and reduces the amount of material and energy used. Now the experts have applied in-volume selective laser etching (ISLE) to the manufacture of composite and assembled parts. This means there is no longer any need to adjust and assemble the individual components in micromechanical systems. The exposure time for a gear wheel already mounted on a shaft and fitted inside a housing is only around 15 minutes using the ISLE technique.
The process works as follows: using ultrashort pulsed laser radiation, a transparent work piece is exposed in the volume with 3D resolution at precisely the areas where material is to be removed. The material is chemically and physically changed and therefore gets selectively etchable. In the subsequent wet-chemical etching process, the exposed material is removed, while the unexposed material is scarcely affected by the etching process. This process makes it possible to manufacture micro channels, shaped holes, structured parts, and complex, composite mechanical components and systems. The ISLE technique can also be used for sapphire and glass as well as ruby. It is reproducible and ensures that components are geometrically identical in series production, while also offering a high degree of geometric and design freedom. Particularly impressive are its ability to produce shapes with micrometer accuracy, as well as kerfs and bores with extremely large aspect ratios, thanks to the small focus volume. The ISLE technique enables a level of material and energy efficiency that is simply not possible to obtain mechanically using even the most advanced ablative processes.

Scaling the laser manufacturing technique for industrial application

The main challenge facing the researchers in Aachen now consists in developing the ISLE technique so that it can be used by the manufacturers of micro components. “We are constantly working on improving the scalability of our technique so that a transfer from the lab to industrial-scale production can take place sometime in the future,” explains Dr. Dagmar Schaefer, group manager at Fraunhofer ILT. “The ISLE technique is individually adapted to the customer’s requirements according to the specific application. The biggest challenge for us is to achieve both the required component specifications and a sufficiently rapid structuring process at the same time.”
The exposure speed is currently several hundred millimeters a second. The goal is to increase this to several meters a second. At present, exposing a mounted gear wheel with a diameter of three millimeters would take 15 minutes; the higher exposure speed would reduce this time by a factor of 10.
In the medium term, efforts will be aimed at exploiting the potential of the technique within individualized mass production. This entails improvements to the present state of development that include increasing laser power and repetition rates and the use of faster beam deflection systems . ISLE promises greater cost-effectiveness and flexibility in the production of micro components in small and large batches, as well as in the mass production of individualized components.

Further Contacts

Dr. Dagmar Schaefer
Head oft he Group In-Volume Structuring
Phone +49 241 8906-628
dagmar.schaefer@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Akad. Oberrat Dr. Ingomar Kelbassa
Acad. Director of the Chair for Laser Technology LLT at the RWTH Aachen University
Phone +49 241 8906-143
ingomar.kelbassa@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer ILT
Further information:
http://www.ilt.fraunhofer.de

More articles from Trade Fair News:

nachricht Tool making and additive technology exhibition: Fraunhofer IPT at Formnext
31.07.2015 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets
30.07.2015 | Heraeus Noblelight GmbH

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

The Macromolecular Shredder for RNA in the Cell Nucleus

03.08.2015 | Life Sciences

Argonne Finds Butanol is Good for Boats

03.08.2015 | Ecology, The Environment and Conservation

How to Become a T Follicular Helper Cell

03.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>