Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


INM at international trade fairs Part 1: Printed transparent conducting oxide layers on film

Transparent conducting oxides (TCO) are widely used as transparent electrodes or IR-reflective materials.

TCOs are normally produced on solid substrates using vacuum coating such as sputtering, but can also be applied to flexible substrates such as plastic film using special TCO inks.

Transparent conducting oxides (TCO) are widely used as transparent electrodes.
Source: Uwe Bellhäuser

To do this, developers at the INM use TCO inks containing TCO nanoparticles and produced using wet chemistry processes. This method enables not only application to plastics and films but also, for the first time, direct printing of transparent conductor structures.

The INM will be exhibiting these and other developments from 15 to 17 October at Materialica 2013 in Munich and from 23 to 24 October at Eurofinish 2013 in Ghent (Belgium).

“We produce special nanoparticles from the transparent conducting oxides”, explains Peter William de Oliveira, Head of the Optical Materials Program Division. “By adding a solvent and a special binder, these modified TCO nanoparticles can be applied to the film directly by gravure printing as an “ink” using a printing plate”, he adds.

This process has a number of advantages. Gravure printing enables TCO layers to be printed cost-effectively in just one process step. As a result of UV curing at temperatures below 150°C, it is also possible to coat thin plastic films. The binder fulfills a number of tasks here. It produces good adhesion of the TCO nanoparticles to the substrate and also increases the flexibility of the TCO layers. This means that the conductivity remains the same, even if the films become distorted - a clear advantage over current high-vacuum techniques such as sputtering. “There is still potential here for further development”, explains physicist de Oliveira. “If we succeed in also making the binder conductive, conductivity as a whole will increase and the surface resistance will be further reduced.”

Coating on flexible film substrates is possible using the classic roll-to-roll process. Initial experiments on this at the INM are promising, and researchers are agreed that the use of structured rolls in future will mean that large, structured, conductive surfaces can also be printed cost-effectively and with a high output.

In addition to using TCO nanoparticles, developers at the INM are also working with the wet chemistry sol-gel process which is particularly suitable for temperature-stable substrates such as glass or ceramic. In this process, curing takes place at temperatures above 450°C. In addition to large-area substrates, more complex geometries such as pipes and moldings can also be coated. “Here again, the advantage lies in the costs”, says the Head of the Program Division.

With vacuum coating processes such as the sputter method, expensive high-vacuum apparatus and large TCO targets are needed for coating large areas; there is also the limited possibility of evenly coating curved substrates using this technique.

At the INM, too, the material of choice is predominantly indium tin oxide (ITO). Because of dwindling resources and the high price of the raw material indium, researchers at the INM are also increasingly testing alternative transparent oxides such as aluminum zinc oxide (AZO).

Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Programme Division Optical Materials
Phone: +49681-9300-148
INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for implant surfaces, new surfaces for tribological applications and nanosafety/nanobio interaction. Research at INM is performed in three fields: Chemical Nanotechnology, Interface Materials, and Materials in Biology.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 190 employees.

Dr. Carola Jung | idw
Further information:

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>