Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INM among the 21 German exhibitors at nano tech 2014 in Japan

27.01.2014
The INM – Leibniz Institute for New Materials will be presenting its latest developments at this international trade fair for nano materials.

In doing so, it will strengthen its international focus and strategic partnership with Japan. From 29 to 31 January, it will be in the German Pavilion where it will showcase its expertise in nanotechnology-based coatings with special properties.

These include antimicrobial coatings, transparent and conductive layers, the printing of electronic conductor tracks on a micrometre and nanometre scale, or coatings which enhance the efficiency of solar cells. The INM will also explain developments in which adhesion on surfaces can be switched on and off.

Switchable adhesion principle for non-residue gripping in a vacuum
Automotive, semiconductor and display technologies as well as manufacturers of complicated lens systems use components with highly sensitive surfaces for their products. During the production process, such parts are transported back and forth in many process steps. Each process of lifting up and lowering using conventional gripping systems carries the risk of residues adhering or damage being caused to such surfaces. Sucker systems reduce residues, but they do not work in a vacuum. The researchers at the INM have now advanced the gecko adhesion principle to such an extent that they are now also able to switch it on and off in a vacuum.
Glass-like diffusion barrier for flexible CIGS solar cells for spraying
Researchers at the INM have developed a barrier layer for flexible CIGS solar cells which separates the metal substrate from the absorber layer and so increases the efficiency of the metal-based solar cells. A wet chemistry spray process can then be used to apply it to flexible and rigid substrates with a variety of shapes.
Printed transparent conducting oxide layers on film
TCOs are normally produced on solid substrates using vacuum coating such as sputtering, but can also be applied to flexible substrates such as plastic film using special TCO inks. To do this, developers at the INM use TCO inks containing TCO nanoparticles and produced using wet chemistry processes. This method enables not only application to plastics and films but also, for the first time, direct printing of transparent conductor structures.
Photometallization: Different size electronic strip conductors in the one-step process

Electronic conductor strips determine the operational capability of a number of devices and instruments such as in TFT screens on displays and touch screens or in transponders in RFID systems where structures with large conductor strips measuring several millimeters vary, the smallest structures measuring just a few micro- or nanometers. Up to now, these conductor strips have been manufactured in different production stages, but researchers at the INM have developed a new process with which they can create macroscopic and microscopic conductor strips in a single production step

Anti-microbial coatings with a long-term action
Hygienic conditions and sterile procedures are particularly important in hospitals, kitchens and sanitary facilities, air conditioning and ventilation systems, in food preparation and in the manufacture of packaging material. In these areas, bacteria and fungi compromise the health of both consumers and patients. Researchers at the INM have now produced antimicrobial coatings with both silver and copper colloids with a long-term effect that kill germs reliably and at the same time prevent germs becoming established.
Your experts at the INM
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head Optical Materials
Phone: +49681-9300-148
peter.oliveira@inm-gmbh.de
Dr. Carsten Becker-Willinger
INM – Leibniz Institute for New Materials
Head Nanomers
Phone: +49681-9300-196
carsten.becker-willinger@inm-gmbh.de
Dr. Elmar Kroner
INM – Leibniz Institute for New Materials
Assistant Head Functional Microstructures
Phone: +49681-9300-369
elmar.kroner@inm-gmbh.de
INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for implant surfaces, new surfaces for tribological applications and nanosafety/nanobio interaction. Research at INM is performed in three fields: Chemical Nanotechnology, Interface Materials, and Materials in Biology.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 190 employees.

Weitere Informationen:

http://www.nanotech-tokyo.german-pavilion.com/content/en/home/home.php
http://www.nanotech-tokyo.german-pavilion.com/content/en/exhibitors/exhibitors_detail.php?exhibitor_id=41901

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de

More articles from Trade Fair News:

nachricht Heraeus Noblelight at the Drupa 2016
02.05.2016 | Heraeus Noblelight GmbH

nachricht Flexible robot systems for digitalized production
27.04.2016 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>