Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INM among the 21 German exhibitors at nano tech 2014 in Japan

27.01.2014
The INM – Leibniz Institute for New Materials will be presenting its latest developments at this international trade fair for nano materials.

In doing so, it will strengthen its international focus and strategic partnership with Japan. From 29 to 31 January, it will be in the German Pavilion where it will showcase its expertise in nanotechnology-based coatings with special properties.

These include antimicrobial coatings, transparent and conductive layers, the printing of electronic conductor tracks on a micrometre and nanometre scale, or coatings which enhance the efficiency of solar cells. The INM will also explain developments in which adhesion on surfaces can be switched on and off.

Switchable adhesion principle for non-residue gripping in a vacuum
Automotive, semiconductor and display technologies as well as manufacturers of complicated lens systems use components with highly sensitive surfaces for their products. During the production process, such parts are transported back and forth in many process steps. Each process of lifting up and lowering using conventional gripping systems carries the risk of residues adhering or damage being caused to such surfaces. Sucker systems reduce residues, but they do not work in a vacuum. The researchers at the INM have now advanced the gecko adhesion principle to such an extent that they are now also able to switch it on and off in a vacuum.
Glass-like diffusion barrier for flexible CIGS solar cells for spraying
Researchers at the INM have developed a barrier layer for flexible CIGS solar cells which separates the metal substrate from the absorber layer and so increases the efficiency of the metal-based solar cells. A wet chemistry spray process can then be used to apply it to flexible and rigid substrates with a variety of shapes.
Printed transparent conducting oxide layers on film
TCOs are normally produced on solid substrates using vacuum coating such as sputtering, but can also be applied to flexible substrates such as plastic film using special TCO inks. To do this, developers at the INM use TCO inks containing TCO nanoparticles and produced using wet chemistry processes. This method enables not only application to plastics and films but also, for the first time, direct printing of transparent conductor structures.
Photometallization: Different size electronic strip conductors in the one-step process

Electronic conductor strips determine the operational capability of a number of devices and instruments such as in TFT screens on displays and touch screens or in transponders in RFID systems where structures with large conductor strips measuring several millimeters vary, the smallest structures measuring just a few micro- or nanometers. Up to now, these conductor strips have been manufactured in different production stages, but researchers at the INM have developed a new process with which they can create macroscopic and microscopic conductor strips in a single production step

Anti-microbial coatings with a long-term action
Hygienic conditions and sterile procedures are particularly important in hospitals, kitchens and sanitary facilities, air conditioning and ventilation systems, in food preparation and in the manufacture of packaging material. In these areas, bacteria and fungi compromise the health of both consumers and patients. Researchers at the INM have now produced antimicrobial coatings with both silver and copper colloids with a long-term effect that kill germs reliably and at the same time prevent germs becoming established.
Your experts at the INM
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head Optical Materials
Phone: +49681-9300-148
peter.oliveira@inm-gmbh.de
Dr. Carsten Becker-Willinger
INM – Leibniz Institute for New Materials
Head Nanomers
Phone: +49681-9300-196
carsten.becker-willinger@inm-gmbh.de
Dr. Elmar Kroner
INM – Leibniz Institute for New Materials
Assistant Head Functional Microstructures
Phone: +49681-9300-369
elmar.kroner@inm-gmbh.de
INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for implant surfaces, new surfaces for tribological applications and nanosafety/nanobio interaction. Research at INM is performed in three fields: Chemical Nanotechnology, Interface Materials, and Materials in Biology.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 190 employees.

Weitere Informationen:

http://www.nanotech-tokyo.german-pavilion.com/content/en/home/home.php
http://www.nanotech-tokyo.german-pavilion.com/content/en/exhibitors/exhibitors_detail.php?exhibitor_id=41901

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de

More articles from Trade Fair News:

nachricht LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016
25.05.2016 | Laser Zentrum Hannover e.V.

nachricht Aachen Center for 3D Printing at RapidTech 2016: Additive Manufacturing for Medium-Size Companies
25.05.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>