Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters Weld Efficiently and in a Targeted Manner

30.07.2013
Pipes, tubes, barrels and pressure-resistant filter housings are many of the plastic products which need to be assembled from individual components after injection molding. Infrared heating helps to weld the plastic components together without the need for adhesives or other fastening devices.

Many of these production steps are significantly facilitated and speeded up by using infrared emitters. Both time and energy are saved when quartz glass emitters are matched exactly to the product and process.


Infrared heat allows fast and efficient welding of swimming pool filter housings.
Copyright Dr. Uwe Egen, IPWC, Kassel 2013

Heraeus Noblelight will be showing application-optimized infrared emitters and systems on stand G59 in Hall 10 at the K Show, which takes place in Düsseldorf from 16th to 23rd of October. There will also be an opportunity to speak directly with Heraeus application specialists on the stand.

Housings for swimming bath filters are relatively large and thick-walled and must be pressure-resistant. They are injection-molded in two halves in polypropylene and the two halves are welded together. For one company in South East Asia, the welding together of these large and thick-walled plastic components presented a real challenge, as the filter housing, when in its operating position, was clearly visible so that the welding seam had to be optically perfect.

The company formerly used a welding system with resistance heating elements in an aluminum block with a Teflon coating. The heating elements were pneumatically swiveled in and out of position. However, the polypropylene, which flows easily when melted, tended to stick on the heating element, so that quality and speed of production could no longer meet the increased production requirements. Consequently, a more efficient solution was sought, in order to save energy. Omega infrared emitters from Heraeus provided this solution.

A Custom-Built Infrared Welding Solution

For his customer in South East Asia, Dr Uwe Egen of IPCW (International Plastic Welding Consultancy) in Kassel, designed and built a system, which contains one of the largest Omega infrared emitters ever manufactured. This special emitter has the shape of a Greek letter omega, a diameter of 61 cm and is fitted with a 180° gold reflector, so that the heat can be totally targeted to where it is needed.

Two of the ring-shaped emitters project their heat radiation onto the edges of the half shells. They sit in a swivel device and are swiveled away after they have melted the plastic edge. The two halves can then be joined together.

An intelligent control system, which was fitted in the existing control cabinet, helps to maintain an intensity/time profile. Combined with the correct welding pressure, this ensures an optimum welded joint.

“The infrared system has replaced the contact heating elements, so that now we have much shorter cycle times,” says Dr Egen. “However the main advantage of the infrared technology for me is that the two halves can be precisely centered. Infrared heats without contact, so there is no longer any possibility of contact surfaces sticking together and then shifting out of position.”

Infrared Heating Technology for Joining Plastics

Infrared radiation is transmitted without contact and generates heat directly in the product to be heated. Consequently it is superior to conventional methods, such as heating by contact plates. Unlike welding with contact heating there is no chance of hot plastic sticking to the heat source.

Consequently, with infrared welding plastic components can be welded without any unpleasant odors, in a matter of seconds and in the knowledge that the finished product will be the same every time. There is also no need for time-consuming cleaning processes. Unlike vibration welding, there is no abrasion debris, which can be deposited on the product or the welding system. Infrared heating welds half shells into a pressure-tight container, while ultrasonic welding is mainly used in spot welding. Lasers weld plastic components using high energy but very high welding pressure is needed so that special safety measures are needed.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with more than 160 years of tradition. Our fields of competence include precious metals, materials and technologies, sensors, biomaterials and medical products, quartz glass, and specialty light sources. In the financial year 2012 Heraeus generated product revenues of €4.2 billion and precious metal trading revenues of €16 billion. With more than 12,200 employees in over 100 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2012, Heraeus Noblelight had an annual turnover of 92,5 Million € and employed 715 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters and systems for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

Heraeus Noblelight acquired on January 31, 2013 the Fusion UV Systems group headquartered in Gaithersburg, Maryland (USA).

For further information contact:
Reader:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht IVAM Product Market „High-tech for Medical Devices“ at COMPAMED 2017
18.10.2017 | IVAM Fachverband für Mikrotechnik

nachricht Fiber Optic Collimation C-Lenses will be Exhibited by FISBA at OFC 2017
14.03.2017 | FISBA AG

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>