Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters Weld Efficiently and in a Targeted Manner

30.07.2013
Pipes, tubes, barrels and pressure-resistant filter housings are many of the plastic products which need to be assembled from individual components after injection molding. Infrared heating helps to weld the plastic components together without the need for adhesives or other fastening devices.

Many of these production steps are significantly facilitated and speeded up by using infrared emitters. Both time and energy are saved when quartz glass emitters are matched exactly to the product and process.


Infrared heat allows fast and efficient welding of swimming pool filter housings.
Copyright Dr. Uwe Egen, IPWC, Kassel 2013

Heraeus Noblelight will be showing application-optimized infrared emitters and systems on stand G59 in Hall 10 at the K Show, which takes place in Düsseldorf from 16th to 23rd of October. There will also be an opportunity to speak directly with Heraeus application specialists on the stand.

Housings for swimming bath filters are relatively large and thick-walled and must be pressure-resistant. They are injection-molded in two halves in polypropylene and the two halves are welded together. For one company in South East Asia, the welding together of these large and thick-walled plastic components presented a real challenge, as the filter housing, when in its operating position, was clearly visible so that the welding seam had to be optically perfect.

The company formerly used a welding system with resistance heating elements in an aluminum block with a Teflon coating. The heating elements were pneumatically swiveled in and out of position. However, the polypropylene, which flows easily when melted, tended to stick on the heating element, so that quality and speed of production could no longer meet the increased production requirements. Consequently, a more efficient solution was sought, in order to save energy. Omega infrared emitters from Heraeus provided this solution.

A Custom-Built Infrared Welding Solution

For his customer in South East Asia, Dr Uwe Egen of IPCW (International Plastic Welding Consultancy) in Kassel, designed and built a system, which contains one of the largest Omega infrared emitters ever manufactured. This special emitter has the shape of a Greek letter omega, a diameter of 61 cm and is fitted with a 180° gold reflector, so that the heat can be totally targeted to where it is needed.

Two of the ring-shaped emitters project their heat radiation onto the edges of the half shells. They sit in a swivel device and are swiveled away after they have melted the plastic edge. The two halves can then be joined together.

An intelligent control system, which was fitted in the existing control cabinet, helps to maintain an intensity/time profile. Combined with the correct welding pressure, this ensures an optimum welded joint.

“The infrared system has replaced the contact heating elements, so that now we have much shorter cycle times,” says Dr Egen. “However the main advantage of the infrared technology for me is that the two halves can be precisely centered. Infrared heats without contact, so there is no longer any possibility of contact surfaces sticking together and then shifting out of position.”

Infrared Heating Technology for Joining Plastics

Infrared radiation is transmitted without contact and generates heat directly in the product to be heated. Consequently it is superior to conventional methods, such as heating by contact plates. Unlike welding with contact heating there is no chance of hot plastic sticking to the heat source.

Consequently, with infrared welding plastic components can be welded without any unpleasant odors, in a matter of seconds and in the knowledge that the finished product will be the same every time. There is also no need for time-consuming cleaning processes. Unlike vibration welding, there is no abrasion debris, which can be deposited on the product or the welding system. Infrared heating welds half shells into a pressure-tight container, while ultrasonic welding is mainly used in spot welding. Lasers weld plastic components using high energy but very high welding pressure is needed so that special safety measures are needed.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with more than 160 years of tradition. Our fields of competence include precious metals, materials and technologies, sensors, biomaterials and medical products, quartz glass, and specialty light sources. In the financial year 2012 Heraeus generated product revenues of €4.2 billion and precious metal trading revenues of €16 billion. With more than 12,200 employees in over 100 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2012, Heraeus Noblelight had an annual turnover of 92,5 Million € and employed 715 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters and systems for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

Heraeus Noblelight acquired on January 31, 2013 the Fusion UV Systems group headquartered in Gaithersburg, Maryland (USA).

For further information contact:
Reader:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

More articles from Trade Fair News:

nachricht Fraunhofer HHI with latest VR technologies at NAB in Las Vegas
24.04.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Kiel nano research at the Hannover Messe
21.04.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>